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The feasibility of exciting a localized X-wave pulse from a finite aperture is addressed. Also, the
possibility of using a finite-time excitation of a dynamic aperture to generate a finite-energy
approximation to an X-wave pulse is explored. The analysis is carried out by using a Gaussian time
window to time limit the infinite X-wave initial excitation. Huygens’ construction is used to
calculate the amplitude of the radiated wave field away from the finite-time source. The decay rate
of the peak of the X wave is compared to that of a quasi-monochromatic signal. It is shown that the
finite-time X-wave propagates to much farther distances without significant decay. Furthermore, the
decay pattern of the radiated X-wave pulse is derived for a source consisting of an array of
concentric annular sections. The decay behavior of the radiated pulse is similar to that of an X-wave
launched from a finite-time aperture. This confirms the fact that time windowing the infinite energy
X-wave excitation is a viable scheme for constructing finite apertures. A discussion of the
diffraction limit of the X-wave pulse is also provided. ®998 Acoustical Society of America.
[S0001-496608)00605-3

PACS numbers: 43.20.Bi, 43.20.P3EG

INTRODUCTION citation wave field results in the generation of finite-energy
LW pulses.

Other pulsed solutions exhibiting distinct similarities to
f:WM-Iike pulses are the X-wave pulses introduced by Lu

In this paper, we address the possibility of exciting lo-
calized X-wave pulses from finite apertures. A large class o
localized wave(LW) solutions to the scalar wave and Max- and Greenlea®®23 Similarly to the FWM-like pulses, the

well equations have been studied extensively.A number X-waves have extended ranges of localization and acquire

of these pulsed wave solutions are finite-energy variants qf . ! .
the focus wave modéFWM).“*l“ They are usually derived C1arge focus depths in the near field. These properties make

: L P these pulsed wave fields ideal for applications involving de-
either as superpositions of infinite-energy FWM . . : )
pulse~1114or by time limiting various FWM-like excita- tection of objects buried at unknown depths, as well as in
tions to construct finite-energy aperture fiefd.Alterna- high-resolution imaging. The use of X-wave pulses in ultra-
tively, such LW pulses can be synthesized as superpositio nic me%'fgl imaging has been investigated by Lu and
over Bessel beams with appropriately chosen spét@ur Greenleaf. They hf’:\ve shown that X-V\ra\res can be gen-
approach is based mainly on the proven possibility of exciterated using uItr_ascrnlc trans<_juc_ers cons_lstrng qf annular ar-
ing Bessel beams from infinite apertuféd.It has been rays of concentrrc prezoralectrrc rings excited by independent
shown that a Bessel beam defined initially on an infiniteWaveforms applied at different time&efs. 16, 18; cf. also
plane (e.g., z=0) propagates under the effect of Huygens’ Ref. 29. Furthermore, Lu and'GreenIeaf ha\re strrdled ex-
operator in the positive direction!™* Any possible contri- Perimentally the improvement in pulse-echo imaging using
butions from acausahegativez-directed components sum X-waves?* Applying X-waves to tissue-equivalent phantoms
up to zero. and standard test objects, they have shown that resolution of

In contradistinction to other solutions excited from infi- Pulse-echo images obtained using X-waves are superior to
nite apertures, such as plane waves and Bessel beams, that obtained with focused Gaussian bedfrf$.In addition
excitation of the FWM pulse does not require infinite power.to their large focus depths, X-waves and FWM-like pulses
This is the case because as the generating aperture beconaée both wideband wave fields. This property renders them
infinitely large, the intensity of the field exciting it decreasessuitable for applications involving parameter characterization
to zero as ¢t) 2, while the area of the aperture increases asising backscattered signals from objects of varying sizes.
(ct)2. These two effects balance each other and the power dklong this direction, Donnelly and Powethave shown that
the excitation wave field remains constant. The energy of than acoustical LW pulse backscattered from compressible
generated pulse becomes infinite because the aperture is dpheres immersed in water can accurately provide informa-
luminated for an infinitely long time. Time limiting the ex- tion about the materials as well as the sizes of the spheres.

2287 J. Acoust. Soc. Am. 103 (5), Pt. 1, May 1998 0001-4966/98/103(5)/2287/9/$10.00 © 1998 Acoustical Society of America 2287



Similar results can be obtained using X-wave acoustical
pulses. As a consequence, these pulsed wave fields can have
applications in parameter characterization and nondestructive
testing of materials. 1.00
The excitation wave field of an X-wave pulse has the
form of an annulus whose radius varies with time. The speed
of expansiorv 5, of the aperture field is related to the speed
of the pulse center, and can be greater than the wave speed
c of the medium. The temporal and spatial frequency content
of an X-wave pulse will be calculated in order to improve
our understanding of the decay pattern of the radiated wave-
field. Similarly to the FWM-like solutions, we shall explore
the possibility of using a finite-time excitation of an X-wave
by imposing a Gaussian time window on the infinite time
initial X-wave field. The amplitude of the radiated pulse will
be calculated in the near-to-far field range and its decay pat-
tern will be compared to that of a quasi-monochromaticFlG' . S_u rface plot of the real part Of_the X_W%\ie pu'fe an the aperture
. o . ) plane @=0) for the parametersa;=0.004m=-, B=7.4, and c
pulse characterized by a specific carrier frequency. It will be= 1500 mys.
shown that the finite-time version of the X-wave propagates
without significant decay much further than quasi-
monochromatic signals. 1

Vywl(p,z=0}t)= [p2+ (a;—iyqt) 272" 2

I. THE X-WAVE APERTURE whereyy=c coshpB. The surface plot of the real part of the
aperture field given in(2) is shown in Fig. 1 fora;

The X-wave solution to the 3-D scalar wave equation=0.004 m and3=7.4. The wave velocity of the medium is

may be expressed as chosen to be&e=1500 m/s. The intensity of the infinite en-

Normalized Field Value
(=)
[4:2]
o

Clm )

Zy ergy excitation of an X-wave aperture is given as
Vxudp 2.0 = ST @ 70+ (2= ot coth 8127 1(p,04)="¥(p,01)¥* (p,0})
(1) .
wherea,; and B are free real parameters agg= 1/sinhp. =7 VIR 2 2 2 29172°
. . — (Yot +a;+2 +2 t
Note thatc coth g is the propagation speed of the pulse. To [(p"= (o))" + s+ 28557+ 285(Yol)°]
ensure that the field will propagate in the forward direction, (©)]

we restrictB to be positive. The solution given in E(L) is

_ : ) .. After rearrangement, the denominator(8) becomes
identical to that derived by Lu and Green¥af if the fol-

lowing substitutions are madea;zy—a,/COSy, Zop D=[p"+(yot)*—2p?(yot)*+ai+2a7p?
—p tany andc coth B—c/cos#. In the notation used by Lu +2a2(yot) 22 (4
and Greenleaf® o is a real parameter angl is the axicon 1Yo '
angle. and forp>a,
The infinite energy solution given in E¢l) was used in 4 4 2 2912_ 2 2
; L . D=[p*+ -2 =[p°— .
Ref. 16 to excite an aperture of a finite size situated at [p™+ (¥ol) PVl [p™=(yal)"] ©

=0 and then to compute the radiated field. In this paper, wé&xpressiong3) and (5) show how the intensity of the illu-
construct a finite aperture in a different manner. We use thénination wave field varies with time at the various radial
fact that the X-wave excitation at=0 acquires the form of positionsp on the aperture plane. At the centroid of the ex-
an annulus whose radial position is time dependent. By timeitation field (p=0 andt=0) the intensityl is finite and is
limiting the excitation wave field, we restrict the radius of equal to 147. For large values op andt, the highest inten-
the time-dependent annulus to be smaller than a finite maxaity occurs afp=ygt. Thus, the illumination of the X-wave
mum value. The advantage of such an approach is that theperture acquires the form of an annulus whose radius
spatio-temporal spectral structure of the radiated pulse beshanges linearly with time. The intensity @t yqt varies as
comes very transparent. One can then have a better unddr/al\/a12+4p2, as it can be deduced from E@). Since the
standing of the depletion of the spectral content of such area of an annulus is proportional po it follows that the
pulse, as well as its behavior as it decays away from itpower of the initial X-wave on the aperture=intensity
sourcé**~" Subsequently, this information can be used toXarea remains constant ast—». The energy of the exci-
design other localized variants of X waves. First, we shaltation wave field is infinite because the aperture is illumi-
present some of the aspects of the X-wave excitation given inated for an infinite time duration.

Eq. (1) without time-limiting it. In Sec. Il, the finite-time The time dependence of the radius of the X-wave aper-

X-wave will be studied in detail. ture is found from the real part of EQR). The amplitude of
Consider the X-wave excitation of a planar aperture pothe real part is maximum on the aperturepat0 andt=0.

sitioned atz=0, viz., The highly focused central portion of the aperture has a ra-
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FIG. 2. Temporal frequency contenb,(p,w), of the X-wave pulse ap FIG. 3. Temporal frequency contenb,(p,w), of the X-wave pulse ap
=0 for the parametera,;=0.004 nT*, g=7.4, andc= 1500 m/s. =2.5 cm for the parametess, =0.004 ni%, 3=7.4, andc=1500 m/s.

dius R, =R(t=0)=a,. As y,t becomes larger thaa,, the
annulus forms atR(t)=yq,t with a width of order a;
<R(t). As a consequence, a good estimate of the radius q
the excitation wave field as a function of time is given by

x- This is a characteristic attribute of most LW pulses. A
imilar 6 function appears in the Fourier spectrum of the
finite-time FWM excitation of a flat aperture studied in
Refs. 1 and 2. For the FWM spectrum we haye y?2, while

R(t) =yot+ R(0). (6) the X-wave exhibits amwo y coupling. The appearance of a

For yot>a,, the speed of the expansion of the aperture iSDlrac 6 function in the spectrum signifies that the initial

. : wave field illuminates the aperture for an infinite time.
given byv ,,=Yo=c coshg. The speed of the centroid of the : . .
) ; To identify the temporal frequency content of the exci-
radiated pulse and that of the expansion of the aperture are.. ) ; L
: tation wave field at various positions on the aperture we de-
always greater thao. However, the faster the centroid of the . i
) fine the temporal spectrum as follows:
pulse travels, the slower the expansion of the aperture be-
comes. "
‘Dt(p,w)=J dx xJo(xp)®(x,®)
Il. FREQUENCY SPECTRA OF THE X-WAVE 0

In order to gain a better understanding of the spectral e X%

content of the X-wave pulse, we need to define the temporal :Zﬁjo dx xJo(xp) Y
and spatial frequency contents of the excitation wave field

given in Eq.(2). Both spectra have to be studied because thene apove integration gives
X-wave illumination is a pulsed wave field exciting different

parts of the generating aperture at different times. The spec- om

trum of the initial excitation given in Eq2) is deduced from Dy(p,w)=— Jo(wplyp)e” “1YoH|w), (13)
the Fourier inversion Yo

8(w=xYo). (10)

+oo +eo whereH w) is the Heaviside unit-step function. The highest
P(x,w)= f_w dtfo dp pJo(xp) contribution to the temporal frequency content comes from
values close tav=0 rad/s. The maximum frequency is de-
it 1 termined from the exponential and is given explicitly as
Xe 2 : 2912+ (7
[p=+(ar—iyot)]
The integration ovep is carried out using6.554.1 of Ref. Oma=(4Yo/a1) = (4¢ coshpiay). (12
26; as a consequence, we obtain For the parametera; =0.004 m, 3=7.4, andc=1500 m/s,
1 [+ 4 . the maximum frequency becomesg,,,=1.227x 10° rad/s or
‘D(X,w):; f_m dt e™'elem XA o, 8  f,.=195.3 MHz. This implies that the minimum wave-

length in this case i3 ,,=1.54 m. The temporal spectrum
The integration ovet yields the following Fourier spectrum: given in Eq.(11) is plotted in Fig. 2 forp=0. The same
20 spectrum is shown in Fig. 3 at=0.025 m. The oscillations
D(y,0)=— e X5(w—xYo). (9 appearing in the latter case indicate that an integration over
X o should yield a smaller amplitude. This is consistent with
One should note that the argument of the Digafunction  the field given in Eq(2), where the amplitude is maximum
couples the temporal frequeneyto the spatial wave number at p=0 and decreases asbecomes larger.
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FIG. 4. Spatial frequency c?nter@,s(x,t), of the X-wave pulse at=0 for  F|G. 5. Spatial frequency conterby(y,t), of the X-wave pulse at=5
the parametera; =0.004 m'~, 5=7.4, andc=1500 m/s. X 1074 s for the parametera; =0.004 nT%, B=7.4, andc=1500 m/s.

The spatial spectrum, on the other hand, describes th

spatial distribution of the source elements on the aperturﬁnlte radius begor:e thbe initial vgavetﬂelq ISI tu_rnzdf_of_f. T?e_t
plane for various times. We define the spatial spectrum as >3M€ approac 5556 een used extensively In detining finite
FWM excitations>>>®The latter approach has the advantage

1 (= ot 2T of providing a deeper insight into the spectral structure of the
=57 fo do e X C “Wo(w=xyo) (13 |agiated LW pulses. Within such a framework, we have been
able to demonstrate that the spectral depletion of LW pulses
or is essentially different from that of the usual quasi-
1 , monochromatic pulsés.This spectral approach has also
Dy(x,1)=— e Xueol, (14 helped us in deriving a diffraction-limit formula capable of
X characterizing the decay behavior of ultra-wideband LW
The spectrum given in Eq14) is shown in Figs. 4 and 5 for puylses’ Because of these advantages, we seek to use this
t=0 andt=5x10""s, respectively. The oscillations ap- approach to time limit the X-wave excitatig), thus con-
pearing in the latter case indicate that the amplitude of the Xtrycting a finite-energy X-wave aperture. The decay patterns
wave decreases after the highly focused central portion of thef the radiated fields calculated using both approaches will

pulse has been launched from the aperture. be compared and the differences between the two methods
will be discussed.
IIl. FINITE TIME EXCITATION A convenient time window to use is the Gaussian exp

We have shown in Sec. | that the power required io(—t?/4T?). In this case, the Fourier spectrum of the initial

excite an X-wave aperture is always finite and that the exci€xcitation can be calculated as follows:

tation energy is infinite simply because the source is excited

for an infinite duration of time. As a consequence, the exci- 1.00
tation wave field, having the shape of an annulus, is allowed e
to expand to infinite dimensions. The illumination given in
Eq. (2) thus requires an infinite aperture to be realized. Be-
cause of the time dependence of the radius of the significant
annular contributions to the excitation wave field, we can
construct a finite-energy source using one of the following
two methods. First we can apply the X-wave excitation given
in Eg. (2) to an aperture having a finite radi®&sand calcu-

late the amplitude of the pulse radiated into #e0 half- 1
space. Lu and Greenléffused this method to construct a 0.25
finite X-wave aperture. One should note that at some instant 1
in time we will haveR(t)>R; subsequently, the excitation 1
wave field inside the finite radius of the aperture becomes 0.00 3 i
very small and can be neglected for all practical purposes. 0 3 6 9 12
One can then presume that the illumination wave field is 4

turned off at that time instant. Alternatively, we can start by

time limiting the infinite excitation giyen_ in EQ2). This  FiG. 6. Normalized spatial spectrum of the finite-time X wave at different
allows the radius of the annular excitation to expand to alistances=ct cothg=0, 40, and 80 m foR,=0.15 m.

——— z=ctcoth()=0m
......... z = ct coth(p) =40 m
—— z=ctcoth(B)=80m

0.75

0.50 -

X 9(x,z=ct coth(B))
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Note that the parameté@rcharacterizes the cutoff time of the = f dx xJo(xp)Ps(x,z,t). (199
illumination of the aperture. As a consequence, it determines 0
ghe maximum rad|us.of the a}perture, €., thg maximum r"jli—|ere,<i>s()(,z,t) is the spatial spectral content at a distance

ius of the annular illumination before the field is cutoff. . S .

Even though for a Gaussian window we cannot define a prezimd timet. Itis given explicitly by

cise cutoff time, it is convenient to use such a function be- to 2 R
cause its Fourier transform is a smooth Gaussian. A rectan- CI)S(X,z,t)zf do — e X¥318(w— xYo)
gular time window provides a definite cutoff time, but its 0 X
Fourier transform is highly o;cillat_ory and more spread out x cody(w/c)Z— x2z— wt). (19b
than the Gaussiam-window given in Eq.(17b). As a con-

sequence, the Gaussian time window is easier to handle n&or the field generated from an infinite apertufe{«), the
merically, while itse™ 2 point provides a reasonable estimate Gaussian in Eg19) becomes a Diraé function forcingw to

of the cutoff time. The use of other time windows and theirequalyy,. In this limit, the argument of the sinusoidal term
effect on the decay patterns of FWM-like pulses have beebecomes equal toy sinhB(z—ctcothB), leading to the
investigated:” We have shown that the decay of the centroiddiffraction-free X wave moving with speed,=c cothp.

of LW pulses can be altered significantly in the near-to-far-For the finite-time excitation, the fine spectral balance that
field range by changing the time sequence of the initial exyields the exact{— ct coth8) functional dependence is up-
citation. We believe that similar results can be obtained foset. Instead, as the pulse travels away from the source plane,
finite-time X-wave apertures. For largevalues, the Gauss- the sinusoidal term progressively introduces oscillations into

ian o window in (17b) reduces to a narrow distribution cen- the Gaussian windows(w— xY,) centered around all the
tered aroundw~ xyo=xc coshp. The spectral width of sjgnificant spectraly components:®~7 Since these oscilla-
such a window is chosen to be smaller thag.,. Therefore,  tions increase with distance, the integration owerields
the temporal spectrum can be viewed as a juxtaposition o§maller spectral contributions at the differenfrequencies.
these windows centered around all the significartompo-  As a consequence, the integration oyen Eq. (193 gives a
nents determined by the spatial spectrum given in(E4).

field amplitude that decreases with distance. The depletion of
Using Huygen’s formuld’ the field radiated into the

the spatial spectral components of tavave is depicted in
>0 half-space can be expressed s Fig. 6, where we have plotted the spatial spectrum given in
oo Eq. (19b) for cT=91.69um and atz=ct coth8=0, 40, and
‘I’(p,z,t)=f0 dx xJo(xp)

80 m. This figure shows that the spatial spectral components
acquire smaller amplitudes as the pulse travels away from
oo the aperture. Consequently, the integration gyar Eq. (19)
Xf do ®(x,w)ete V@0* X2 (18 vyields the expected decay pattern of the centroid of the radi-
0

ated pulse. The decay of the pgak=0 andz=ct cothg) of
Substituting the spectrum given in EG.7a, the amplitude the X wave, normalized with respect to the peak amplitude at

of the radiated field may be expressed as a superposition ovi}e @perture, is shown in Fig. 7. The curves are plotted for

the spatial spectral content of the X-wave pulse; specificallytn® cutoff timescT=30.56, 61.13, and 91.68m. Such cut-

off times correspond to time-dependent apertures acquiring
u(p,z,t)=Re{¥(p,z,t)} maximum radiiR,,,,=R(2cT)=5, 10, and 15 cm.
2291 J. Acoust. Soc. Am., Vol. 103, No. 5, Pt. 1, May 1998 Chatzipetros et al.: Synthesis of waves 2291
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FIG. 8. Decay pattern of the centroid of the X-wave pulse generated by afIG. 9. Contribution of the different annular sections to the field amplitudes
at various distances.

array of concentric annular sections for different radii.
To verify the validity of the estimated maximum radii, arrays exhit_)it a very slow o!ecay in the near field. The decay
we deduce the decay pattern of the peak of the X-wave usinfj the far field, however, is more abrupt than that corre-
a finite-radius aperture. For such a construction the source o_ndmg to the f|n|t(_a-t|me pulses. The sm(_)pthe_r_dec_ay IS
assumed to consist of a large number of concentric annulf?rtt“_bUt,ed to the CO”“”“O‘%S t?‘f”Off of the |n|t|§1I fln!te-tlmg
array elements. The amplitude of the initial excitation is€XCitation due to the application of the Gaussian time win-
specified on each distinct element and the radiated field®W- The excitation wave field, therefore, acquires smaller
along the axis of propagation &0) is evaluated using the amplitudes at larger ra}dlal p05|t|0n§ as the |IIum|na_t|on of the
aperture approaches its turn off point. We would like to em-

following discrete version of Huygens' formula: ) S F )
phasize, however, that the finite-time aperture performance is

N A, z—2, very close to that of a physically bounded source even

un(0,z,t)= _ngl 47R [[‘92’U]_[‘9ct’u] R, though the former has no physical edge containing the illu-

" " mination wave field. This is a crucial point allowing us to

z—1z, use finite-time dynamic sources in our analysis instead of

_[“]_RT}' (20 physical apertures. The former lend themselves nicely to the
" advocated spectral depletion approach. In Fig. 9 we display a

set of curves showing how the amplitude of the peak of the

total number of annular sectiong,=nAp’ specifies the ra-  propagating X wave, at a specific distance, consists of con-
dial position of the annular section labeled andz is the  tributions from the illumination of a finite domain of the
distance at which the field of the radiated pulse is reconaperture. This information can be used to determine the size
structed. The distance from the source pOint to the ObserVQ)f the aperture needed to radiate a decay_free pu|se up to a
tion point is denoted byR,= V(nAp')*+(z—2z)” for p=0.  specific distance (cf. Ref. 20 for an experimental procedure
The square brackets in EQO) indicate that the enclosed along this path
guantities are evaluated at the retarded timet—(R,/c). Finally, we provide in Figs. 10 and 11 a comparison
The main purpose of the numerical reconstruction procedurgetween the shapes of the longitudinal envelopes of the
embodied in Eq(20) is to focus on the possibility of using propagating X waves a=100. In Fig. 10 we display the
space—time sources on the aperture plaré in order to  time history of the X-wave pulse launched from a finite-time
generate LW pulses in the regiae-0. A second objective is  aperture and compare it to the initial pulse excitation at the
to gain more physical insight into the propagation characteraperture. On the other hand, in Fig. 11 we compare an X-
istics of the reconstructed pulses. wave pulse generated by a discrete circular array to the exact
For annular elements of widthp’ =1 mm, we can con-  wave solution. The oscillations appearing in the front part of
struct apertures having radi=>5, 10, and 15 cm by using the radiated X wave are due to the discretization of the ex-
N=50, 100, and 150 sections, respectively. The decay patitation wave field. Otherwise, the time histories of the
terns of the LW pulses radiated by these three apertures apilses generated using the two suggested frameworks are
plotted in Fig. 8 for the values od; and g used earlier. A almost identical to the exact wave solution.
comparison between Figs. 7 and 8 shows that the ranges of
the two decay patterns are similar. For the finite-time dy-I DIFFRACTION LENGTH ANALYSIS

namic apertures, the centroids of the radiated X waves star
For a quasi-monochromatic CW signal, the diffraction

decaying at close ranges and their rolloff is smoother than
that of X waves generated from discrete circular arrays. Théength is determined in terms of the Rayleigh distance

centroids of the X-wave pulses generated by discrete circularR?/\ ., whereR is the radius of the source and is the

Here, A, is the area of the annular section labetedN is the
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1-00§ acterized using a diffraction length criterion that has been
proposed recentl{.Such a definition of the diffraction limit
is based on the spatial depletion of LW pulses generated by
“finite-time” dynamic apertures. One can argue that a pulse
enters its far-field region when most of the initially signifi-
cant spatial spectral components are depleted. These spectral
components obviously characterize the spatial distribution of
the source elements on the aperture. Hence, the loss of infor-
mation through the depletion of these components signals the
beginning of the far-field region. For ultra-wideband pulses
one is faced with the ambiguity of determining what are the
initially “significant” spatial spectral components. Should
3 one use a 3-dB point as the highest “significant” frequency,
0.00 or would a (1¢?) or (1/e*) point be a more suitable choice?
267 1e-7 0Oe+0 1e-7 2e-7 This ambiguity reflects the fact that there is no sharp limit
Y(sec) between the near- and far-field regions of ultra-wideband
pulses. A definition of a diffraction limit can only be used to
compare the relative performance of different LW pulses.
The crucial issue here is to be consistent in our use of defi-
nitions of the radii and the bandwidths of the excitation wave
fields. Since any of the above definitions can be used to

0.75

0.50 -

Normalized Field Value

0.25 5

FIG. 10. The time history of the finite-time X-wave pulsezat0, 100 m
due to an aperture having radiRg,,,=0.15 m.

wavelength of the carrier wave field. In contradistinction,
any attempt to define t_he diffraction Iength_of a LW pulse pecify the highest “significant” spatial spectral compo-
generated by a dynamic aperture antenna is more involve

e X : lents, we shall use a generic cutoff frequency denoted by
The difficulty can be attributed to the ultra-wideband tempo—Xd_ In this case, we may refer to the following expression

ral bandwidth of the LW pulse, as well as the fact that the . : ;
aperture is characterized by a time-varying radius. One of thf?ci_r the diffraction length of LW pulsefct. Bq. (12) in Ref.

earlier attempts to define a diffraction length for LW pulses

generated by dynamic aperture antennas was undertaken by 4 wo(xa) |2
Hafizi and Spranglé® Their diffraction length is given as Zg= (0l0) |\ xac
Zps= (2mWoRma/ A min» Wherewy is the beam waisR 4 iS

the maximum dimension of the aperture or antenna,\angl = p(Xd) RmaRmin( @max/C) . (21
is the minimum wavelength. Specific applications of this for-
mula to FWM-like LWs can be found in Ref. 7.

The Hafizi—Sprangle diffraction length gives a good
broad sensestimate of the behavior of LW wave pulses asgumeri
they propagate away from their generating aperture planes. ) ) . . .
However, it does not include specical featuresarising of Xa. m_general. The difiraction 'e_’?gth in E((]_Zl) IS ex-
from different types of dynamic aperture excitations. In thisp_resseOI In _te”;*s of speciral quantltles dgplctm_g the excita-
section, the decay pattern of an X-wave pulse will be char:['o_r_] wave f|e|d_, or as a function of the d”."ens'or?s of the

utilized dynamic aperture and the bandwidth of its source
element$: The two expressions may be deduced from each
other if one recalls thatR,,=R(2T), Rnn=2a;, and
o puise (wmax/€)=(4 coshp)/a;. Furthermore, one can choose the
] “significant” spatial components as those exhibiting ampli-
075 tudes larger than (&%) of the maximum of the spatial spec-
] trum. As a consequence, explicit expressions for the diffrac-
tion length given in Eq(21) can be derived. For the X-wave
pulse we defingig=4/a;, n(w/c)=4/cT, and wy(xq) =Cxq
coshg. In this case, Eq(21) reduces to

Here, n(w/c) is the effective width of the spectrab-
window given in Eq(17b) andwq(xq) is the w value of the
center of S(w—xYo) at x=xq. The quantityu(xy) is a

1.00

0.50

Normalized Field Value

Z4=mcT(coshp)?, (22)

°'25'; which is independent of the choice gf. This means that

the source of the X-wave radiated field has the unique prop-
erty of yielding a diffraction length that does not depend on

0.00 jmﬁmwm:wm the particular criterion chosen to defing. In contrast, the
307 2e7  le7  0et0  1e7 207 3e7 diffraction length of the time-limited FWM pulse is propor-
tisec) relative to 2/(c coth(R)) tional to y3.” Hence, X waves can serve to test the relative

FIG. 11. The time history of the X-wave pulse reconstructed=at00 m perfor.mance of other LW DUIseS of comparable source di-
from a circular array and compared to the exact solution at the same didensions and tempor.al spectral bf"de|dthS- For the param-
tance. eter values used in Fig. 7, E(R2) givesZy=64.25, 128.5,
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and 192.75 m. Since the maximum dynamic radius is givemecognized, we can bring together the apparently disparate
by Rmax=2¢T coshg, the diffraction limit given in Eq(22) results of the two research areas into a single framework.
may be rewritten as It has also been shown that an X wave may be generated
_ -~ from finite-time dynamic apertures analogous to those pro-
Z4= (m/2)Rmax COSh 3= (m/4)D coshp, 23 posed as sources for launching FWM-like pulses. One should
whereD is the diameter of the source. Apart from a smallnote that such sources acquire finite sizes by turning on/off
difference in the numerical constant multiplying the their illumination wave fields at finite times. They exhibit
D coshg dependence of the diffraction limit, our result is most of the essential features of physical apertures and at the
the same as the one derived by Lu and Greetfedf. The  same time are much easier to handle mathematically. The
difference in the numerical constant is due to the differenfllumination of the dynamic source of an X wave acquires
criteria used to define the quantities involved in the two apthe shape of an annulus whose size varies with time. This
proaches. should be contrasted with the excitation of the FWM aper-
The expression given in Eq21) illustrates the kind of ture that has the shape of a disc having a time-dependent
performance enhancement that LW pulses exhibit whemadius. A finite-time dynamic aperture does not have a physi-
compared to quasi-monochromatic Gaussian wave fieldgal edge bounding its illumination wave field. This might
Consider, for example, the case of a quasi-monochromatished some doubt on the validity of the results deduced using
beam of waistvy= 2R, equal to that of the highly focused such a construction. To examine the origin of any possible
central portion of the X wave. For a static aperture havingdiscrepancies, we have studied the decay properties of an X
D>wy, the associated diffraction length is definedZg  wave generated from a finite radius source consisting of dis-
= 7TW5/4N min - USING (@ max/C) =27 \min, the enhancement in crete concentric annular sections. The resulting decay pat-
the diffraction range of the X wave over an equivalent quasiterns of the X wave have been shown to compare nicely with
monochromatic beam, of the same waist, is given by thehose derived using a finite-time dynamic source.
ratio (Zq/Z,,) > (Rmax/Rmin)- FOr the parameters used in this Similarly to other LW pulses generated from dynamic
paper, the enhancement in the depth of propagation of the Xpertures, the spectral depletion of an X wave differs from
wave over a comparable quasi-monochromatic signal is ofonventional quasi-monochromatic pulsed wave fields. The
orderO(10)— O(40). This demonstrates that LW pulses be-decay in the spectral components contributing to the ampli-
come advantageous when narrow pulsed wave fields are reide of the centroid of the propagating pulse results from the
quired to have extended focused ranges. A dynamic apertuigcreasing oscillations introduced into the spectia
illuminated by a wave field having a time-dependent radiusyindows with the distance. One can, thus, utilize the
provides an efficient scheme to generate narrow LW pulseknowledge gained from earlier investigatiénSto derive the
from much larger sources. Finally, one should note that theliffraction limit characterizing an X wave. Our spectral
diffraction limit given in Eq.(22) is independent of the pa- depletion approach has established that an X wave has the
rametera, . This indicates that the diffraction length can be attractive property that its diffraction length does not depend
kept constant for pulses having different temporal bandon the particular choice of4. As a consequence, the decay
widths. As such, an X-wave pulse can travel to the saméehavior of any other LW pulses can be compared to that of
diffraction-free range even if we use an excitation wave fieldan X wave?® Both fields should have equal aperture sizes,
having a smaller bandwidth. This is true; however, the radiusvith illumination wave fields exhibiting comparable band-
of the highly focused central portion of the radiated field iswidths. Furthermore, the two radiated fields should attain
equal toR,=a; and wpe<l/a;. Hence, a smaller band- equal focused waists. Finally, it has been shown that the
width corresponds to a larger focus radRjg,, for which the  enhancement in the focused depth of an X-wave dynamic
enhancement ratidRyq«/Rmin) acquires smaller values. Con- source, in comparison to a static aperture used to generate
sequently, the use of smaller bandwidths reduces the emuasi-monochromatic signals of a comparable waist is pro-
hancement achieved over quasi-monochromatic signals. portional to the ratio Rax/Rmin)-
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