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AbsLlract

Diffraction tomography was developed in the late 1970s and
is a premiging way Lo selve the diffraction problem in
tomographiec imaging where the dimension of the details of the
ahjerct Lo be imaged are comparable to the wavelength of
interacting wave. Trn  this paper, further studies of the
reconstruction algorithms of the diffraction Llomography are
performed and the results show that not only the quality of the
reconstructed images is improved greatly, but the time for image
reconstruction is reduced obviously.

In addition, a new gquantitative reflection imaging method
which is based on the transmitting/receiving geometry of the
commeracially available B-scanner is developed from the
theoretical foundations of the diffraction tomography. Besides
the theoretical analysis of this npew quantitative reflection
imaging wethod, a set of experimental system which includes the
interface belween the B-scanner and computer is built up and
images of several practical testing objects are reconstructed
using the data aohtained from Lhis experimental system. The
resul te show that the images reconstructaed by this new
quantitative reflection imaging melthod are more helpful in
understanding the internal structures of testing objects than
those obtained by the ordinary B-scanner and to some extent, the
images are gquantitative. Therefore, this new imaging method will
be useful in tissue characterization and will enhance the ability
of the ordinary P-scanner for diagnosing disease. Tt has been
shown that thiz new guantitative reflection imaging method is an
important progress in acoustical imaging technique and has a good
prospect in practical medical imaging.

Finally, at the end of the paper, some problems which are
required to be further studied are demonstrated.
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T. TINTRODUCTION

A novel imaging technique —— X-ray computerized tomography (short for
XCT) was developed in the early 1970s(1:2), The inventors of the XCT, G.N.
Hounsfield, the electronic engineer of English EMI cooperation and A.M.
Cormacl, the America physicist, won the Nobel Prize of physiology and medicine
in 1979. Encouraged by the succesefulness of the XCT, various kinds of CT with
different physical emanations are developed. By the nature of the interacting
rays used;, the CT imaging techniques can be roughly divided into two
pategories: the (Ts with wavy rays, such as, ultrasonic computerized
tomography (UCT)I3-271, microwave computerized tomography (MCT)(28-311, ete.,
and the CTs with non-wavy rays, such as, XCT(32-441, nuclear magnetic resonant
computerized tomography (NMR-CT)(%3-48], pogitron emission computerized
tomography {PET )l 221, single photon emission computerized tomography
{SPECT)I50-521 . ste.  (in fact, the classification above is not absolute, for
the non-wavy raya become the wavy rayvs if its wavelength is comparable to the
dimension of the details of the object to be imaged).

Tn this paper, the CT techniques with the emanation of wavy rays,
especially, the TICT in medical application are concerned. The reason is that
as compared with microwave, ultrasonic wave can penetrate deeper in biological
soft-tissues, for the ultrasonic wave is less heavily attenuated in the
biological soft-tissues when it has the same wavelength as the microwave. As
compared with the XCT, the UCT has less hazard to human body and can provide
higher contrast images of the biological soft-tissues, and moreover, the
imaging equipment of the UCT is simpler and less costed,

So far, the images of the UCT is not so gowxd that they can be applicable
in clinicl15.16)1 . A ]ot of efforts have been done for correcting the ray-
bending effects which affect the quality of the images of the UCTI3:20,251,
however, the improvement wms not distinct, for the diffraction effects of the
ultrasonic wave in the biological soft-tissues is remarkable. To solve the
diffraction problem of the wavy ray CTI', in 1978, a new CT imaging method —
diffraction tomography was put forward by R.K. Mueller et al,l531, For the
diffraction tamography takes the diffraction effects of the wavy rays into
account, it is a promising way to improve the quality of the images of the

The theoretical hasis of the diffraction tomography is the inverse
scattering solution of the wave equation which is obtained by linearizing a
group of nonlinear partial differential equations that govern the rules of the
wavy rayg interncting with the object to be imaged (such linearization is
possible because the amplitude of the waves used is usually very small in
medical diagnosis), There are two kinds of methods for the inverse scattering
aolution of the wave equation. One is iterative methodl53-601  which exists
the mathematical problems of wniqueness, stableness and convergence in the
iteration, and is very time-consumed. Although this method is developed
constantly, it is still far from been applicable in practice. Another is the
diffraction tomography method, i.e., the method for solving the inverse
scattering  problem  analytically under the «condition of first-order
approximation (weali scattering approximation), For this paper concerns only
the ultrasonic imaging of the biological soft-tissues, the first-order
approximation can be used, therefore, the diffraction tomography method is
chosen for studying,

Since the concept of the diffraction tomography was put forward, many

reconstruction algorithms of the diffraction tomography was studiedl&i-100],
But, it is required that these algorithms are further improved for the
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performances of their speed and image quality. Therefore, in the first part of
this paper, some of the reconstruction algorithms of the diffraction
tomography are studied in detail in order that they will be quicker as well as
be better in the quality of the image reconstructions. In the second part of
this paper, a new quantitative reflection imaging method is developed, which
obhtains the gquantitative distribution of the acoustical parameter of the
biological soft tissues from the transmitting/receiving geometry of the
ordinary B-scanner and the theorelical foundation of the diffraction
tomography. It is promising thal this new imaging method will enhance the
ability of tissue characterization of the ordinary B-scanner.

In algorithm studies of the diffraction tomography, the application of
cubicc spline interpolation to the densifving of the diffracted data is first
investigated, Tn 1982, A,J, Devaney proposed the filterad-backpropagation
reconstruction algorithm of the diffraction tomography (short for Devaney's
algorithm)i 671 which was looked as one of the important advances in
physiegl7o] , Unfortunately, this algorithm is very time consumed. For
instance, it requires approximately O(N3log:N) complex multiplications for a
NxN pixeal  image reconstructed from NxN diffracted data (N projections and N
samples in each projection). In 1983, S.X. Pan et al. put forward zero-padding
densifying Fourier-domain interpolation reconstruction algorithm of the
diffraction tomography (short for Pan'’s algorithm){®!1, which not only reduced
the computational consumption of Devaney's algorithm obviously, but still kept
the high quality of the image reconstructions. Tt requires only approximately
O{N2 logaN)  complex multiplications lor reconstructing a NxN pixel image from
NxN  diffracted data. As the =zero-padding technique is applied in the
densifying of the diffracted data, the Pan's algorithm is still time-consumed.
Ta further speed up the Pan's algorithm, cubic spline densifying fourier-
domain interpolation reconstruction algorithm (short for spline algorithm) is
developed, With the spline algorithm, images are reconstructed in high speed
ag wvell as in high quality.fatl

There are two modes of diffraction tomography, one is transmission mode
and the other is reflection mode. Because the transmission signal usually
represents the low-frequency component of the spatial frequency of the object
oo be imaged and the reflection signal represents the high-frequency
component, to gain higher resolution, a new mode of diffraction tomography —
transmisgion-reflection diffraction tomography (short for TRICT) is developed
by rcombining above two kinds of diffraction tomography, However, in the
computer simulation of the TRDCT, it is discovered that the high-freguency
noise is associated with the image reconstruction of the TRDCT. To diminish
the high-frequency noise, nonlinear-smoothing image processing techniquel37]
is adopted for the processing of the images reconstructed by the TRDCT. The
results show that the images reconstructed by the TRDCT and then followed by
the process using the nonlinear-smoothing imege processing technique are of
not only higher resolution than the conventional transmission diffraction
tomography, but high quality. Tn addition, to use the Fourier-domain
interpolation reconstruction algorithm in the TRDCT, a group of conversion
relationships  between the ecurvilinear coordinates and the rectangular
coordinates are derived,l A2l

To get the diffraction tomography applied more easily in practice, in
1982, Dr. D. Nahamoo et al., put forward the synthetic aperture diffraction
tomography (short for SADCT) 8%1 which required its transmitting/receiving
system to be rotated around the object to be imaged only once and in
principle, any type of insonification can be used. Furthermore, an
interpolation-free  reconstruction algorithm Ffor the SADCT  (short for
interpolation-free algorithm) was proposed by them!89), Because there is a
space-variant filter in the interpolation-free algorithm, this aldgorithm is
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time-consumed. In this paper, a computational study of the Fourier-domain
interpolation reconstruction algorithm of the synthetic aperture diffraction
tomography (short for interpolation algorithm) is carried out and a comparison
between the interpolation and the interpolation—free algorithm is performed.
The results show that the interpolation algorithm is not only faster then the
interpolation-free algorithm (such as, the time required for reconstructing a
128x128 pixel image using the interpolation algorithm is only about 13% of
that using the interpolation-free algorithm), but is superior in the quality
of the reconstructed images when images are evaluated with the image quality
criteria of  this paper. In addition, in the computer simulation, it is
discovered that because an object whose center is not at the origin of the
coordinates will has a fast oscillating phase factor contained in its Fourier-
damain, the resolution of the Fourier-domain interpolation will be decreased
and. thus the quality of the reconstructed images will be degraded if the
center of the object is nobt moved back to the origin of the coordinates before
the Fourier-domain interpolation. It is also discovered that for the
distribution of the pointg on which the Fourier transform of the object
function is known near the boundaries of the Fourier-domain coverage areas of
the SADCT is highly uneven, it will be not accurate to interpolate the grid
pointe near the boundaries of the Fourier-domain coverage areas using the
peinte on which the Fourier transform of the object function is known and
using ‘the ordinary interpolation scheme. However, the quality of the
reconstructed images will be greatly improved if special consideration is
taken for the interpolation using these unevenly distributed points.[A3-A5]

By the studies of the reconstruction mlgorithms above, the speed of the
image reconstructions of these algorithms is increased and the quality of the
reconstructed images is improved. Moreover, as several datum acquisition
geometries of the diffraction tomography are taken into account, these
algorithms are more liable to find practical applications,

Tn waddition to the study of the diffraction tomography, a new
quantitative reflection imaging method (short for QRI method) is developed.
The imaging procedures of the QRT method are as follows: first, the high-
frequency component of the one-dimensional object function on the line along
vhich the focused pulsed acoustical wave is propagated is obtained from the
recaived rf (radio frequency) echo signals; then the low-frequency component
of the one-dimensional object function is recovered from the high-frequency
component  using the a priori knowledges that the outlines of the internal
structures of the object and the phases of the rf echo signals returned from
these outlines are known and using the GP (Gerchberg-Papoulis) frequency
extrapolaltion techniquet %31, From the complete spectrum, the one-dimensional
ohject function oan be chtained, With the focused ultrasonic beam scanned
linearly in the cross-section of the object to be imaged, two-dimensional
sound-speed  distribution of the object in that cross-section can be
recongt ructed, In addition to the new imaging methad developed and the
theoretical analysis of it, the B-scan system is connected to computer and a
set of experimental system which includes some interface cirecuits is built up.
By the data obtained from this experimental system, images of several
practical objects are reconstructed. The results show that the images
reconstructed by the QRI method are more helpful in understanding the internal
structures of the testing objects than those obtained by the ordinary B-
seanner, and the images reconstructed are quantitative. Therefore, it is
promising that the QRT method can be combined with the ordinary B-scanner and
will enhance the ability of the ordinary B-scanner for tissue characterization
and for diagnosing diseases,

Finnlly, the theoretical and experimental problems of the diffraction
tomography and the QRT method are demonstrated.! A, A7)
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TT. FORWARD AND PACKWARD PROCESSING OF THE ACOUSTICAL WAVE SCATTERING 1IN
BIOLOGICAL SOFT TISSUES

1. Forward Processing of Acoustical Wave Scattering

Suppose the biclogical soft tissues can be modeled as statie, isotropic
and viscoelastic fluid medium, and the propagation of the acoustical wave in
the medium is adiabatic, the rule which governs the propagation of the
acoustical wave in the biological soft tissues can be described by the
following system of nonlinear partial differential equationst10ll:

(1) Equation of motion

v
Pl——14pviwv = v T4E (2-1)
ot

where @ =p(r,t) and v = v(r,t) are the density of the medium and the
vibrating velocity of the particles in the medium respectively; E = E(r,t) is
the net external force which acts on the medium; § is a stress tensor, which
is given hy

T = =(utre vITHE(vv+vY) (2-2)
where u = u(r,t) is sound pressure; ¥ is a unit tensor; & is viscous
coefficient; ¥ = (2/3)6-¢ is zecond friction ceefficient, where ¢ is expansion
friction cocefficient; wvv is a tensor, and vv represents the transposition of
v‘\'_‘.l

(2) Equation of continuity

28 - - (pv) (2-3)

ot

{3) Equation of state

AU K dp
— T — — (2-4)
2t P dt

where i =} (r) is the adiabatic compression module.

Assume that the amplitude of incident acoustical wave is very small and
there is no density fluctuation in the medium when the acoustical perturbation
is absent. If the viscous coefficient £ and the friction coefficient & are
negligible, in the region beyond the sources of the sound the sound pressure u
is satisfied by the following wave equation

] 2Uf£a t)
~Ct (r)v?ulr,t) = 0 (2-5)
D t2

where C(r) = IF,(g}/pu represents the phase velocity of the acoustical wave
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travelling in the medium, Qo is the density of the medium with the absence of
the acoustics]l perturbation.

For the sound pressure ul(r,t) can be expressed as a linear superposition
of monochromatic wave with different frequency, the case that u(r,t) is
monochromatic will be conzidered first, i.e.

ulr,t) = Uir)exp(-jut) (2-6)

where WU(r) is the amplitude of the monochromatic wave; @ represents the
angular frequency.

Substituting Fq.(2-6) into Eq,(2-5), we have the following Helmholtz
equation

vZU(r)+K2 ()W) = 0 (2-7)
where K(r) is given by

Kir) = «/C(r) (2-8)

The Helmholtz equation can be written in another form

vU(r)+kdU(r) = -F(r)U(r) (2-9)

where F(r) is the object function which represents the inhomogeneities of the
distributions of the acoustical parameters of the object and is given by

Ik [02 ()=~1]; wvhers r is a point in the object
F(r) = | (2-10)
0 i otherwise

where ko = W/Cy 1is the wavenumber of the medium surrounding the object;
ni(r) = Ce/Cl{r) represents the distribution of the refractive index of the
objeect.,

Suppose the volume which encircles the object is Vo and the surface of
the volume is Sy, Combining the partial differential equation shown in Eq, (2-
9) with a boundary condition, the boundary-value problem which determines the
distribution of the acoustical field Ufr) in the space will be formed. In
practical medical imaging, the boundary conditions can be the combination of
partly rigid and partly flexible boundary conditions( 58]

Vs (T ) ne (re Y4e(rs }U(_T_'_: ) = -h{g, ) (2-11)

where e{ry;) is the resistance reacting between the boundaries and their
surrounding medium; h(rs) is zero everywhere except on the source region;
ne (rs) represents the normal vector on the surface Sp and is pointed to the
ingide of the volume Vo; ws is the gradient in terms of r., and r: here is a
position vector on the surface Sp.

In accordance with the boundary-value theory of the partial differential
equationl 1011 = the uwnique solution of the boundary-value problem which
consists of Eq.(2-9) and Eq.(2-11) can be expressed as the summation of two
parts: the solution of the inhomogeneous equation with the homogeneous
boundary condition (h(rs) = 0) and the solution of the homogeneous equation
(Fir) = 0) with the inhomogeneons boundary condition, The solution of the
inhomogeneous equation with the homogeneous boundary condition can be obtained
by counting up every elementary contribution of the distribution sources in
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the medium, If Girlre) is the field on the point r produced by a point source
on re, the field caused by the distribution source F(r)U(r) will be the
integration of the function Flre)U(re)Girlre) over the volume V. Here,
Glrire) ie the Green's function.

Similarly, the soclution of the homogeneous equation with the inhomogeneous
boundary condition oan be obtained by counting up every  elementary
contribution of the bourdlary sources. To ealculate the elementary
contribution, h(rs) will be set to zero everywhere except on the place where
there is a source element. Therefore, each elementary contribution of the
benmdary  sources will be the solution with the homogeneous boundary condition
and with a point source on rs on the boundaries. Such solution will be of the
form of the above Green's function Glrlrp) where rp = rp;, and is notated as
Glrlr:). Therefore, the field caused by the inhomogeneous boundary condition
can be expressed as the integration of the function Girlre Jhire) over the
entire surface of the boundaries Sg.

Tn the following, the solution of the inhomogeneous equation (Eq.(2-9))
with the inhomogeneous boundary condition (Eq.(2-11)) will be given.

The Green's function Girlrs) is satisfied by the following inhomogeneous
Helmholtz equation and the homogeneous boundary condition

(v34k2 )G(rlre) = -§(r-10) (2-12a)

{
vaO{rs iro ) ns (s Y+e(re )G(ralre) = 0 (2-12b)

where £(r-ro) is the Dirac delta function which represents a point source on
r=ro. The Green's Ffunction G(r|rp) in Eq.(2-12) is continuous everywhere
except on the singular point r = ro, and when |r-rs| - 0,

1
(2-13)

Glrire) -
lr-1o |

and it is proved that for the homogeneous boundary condition, Glrlre) is
symmetric

Girirs) = Glralr), r,reVy (2-14)

Multiplying both side of Eq.(2-9) by Gir|re) and both side of Eq.(2-12a)
by U{r) and then subtracting, we obtain

G{rlr 12 U{r)-U(r)v2Glrire ) = -F(r)U(r)G(r]ro )+§(r~rs )U(r) (2-15)
Exchanging the order of r and rp in Eq.(2-15), and integrating the result in
terms of rpy over the volume Vo, from the symmetry of Girirs) and §(r-rp), one

obtains

Jvo [Glrlro )v8U(ro )-U(ro )v8G(rlre ) ldre = ~JvaFlre YU(re )G{r|re Jdre
+fvo Ul )8 r-ro Jdry ' (2-16)

where wv§ is the Laplacian operator with respect to ro. By the use of the
Green's formula

Jvo [G(r]ro )53 Ulre )-Ulro )3 G(rlrs ) 1dre
= Jso [Ulrs )vsG(rle: )-G{rlrs )vsUfrs ) ] ns (rs )ds (2-17)

the expression of the field on the point r in the volume Vo can be obtained
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Ulr) = JvoFlro )U(re )G(r]ro Ydrs
+ise [U(re Vv Gl rs )-Glrlrs ) v Ulrs ) 1+ ne (22 )ds (2-18)

where d= represents a differential area on So.

Substituting Eq,(2-12b) into Eq.(2-12), and using Eq.(2-11), one obtains

Ulr) = JsoGlrlrs Yh(rs Yds+Sve Flre YU(re YG(r (1o )dro (2-19)
lat

Ui {r) = fsoGlrlre )h(rs )Yds (2-20)
and

Us (r) = fvoF(xo )Ulre )G(xr|re )dry {2-21)
one finds

Ur) = Ui (p)+s (1) (2-22)

where U (r) is the field caused by the boundary sources when the object is
homogeneous (F(r) = 0), and therefore, it is called the incident field; 1k (r)
ig the scattered field caused by the inhomogencities (F(r) X 0) of the object.

As the total field U(r) is contained in Fq.(2-21), it is difficult in
general  to establish a simple relation between the object function and the
scattered field. For in this paper, only the ullrasonic imaging of the
hinlogical soft btissues is concerned, the first-order approximation condition
(weak scattering assumption) is satisfied. With the first-order approximation,
n simple relationship batween the ohject funetion and the measured seattered
field ean be eslablished. So that, in the following, we will first find the
integral solution of the scattered field under the condition of the first-
order Born and the first-order Rytov approximation.

Substituting Eq.(2-22) into Eq.(2-21), one obtains
Us () = JvoFlro )V (xo )G(elre Jdre+ v Fire )Us (1o )G(rlre )dre {2-23)

let the firet and the second term in Eq.(2-23) be Us(r) and D.(p)
respectively. Then, substituting

Us (2) = Usr ()40 (1) (2-24)
into the expression of Ue (r), there will be
Ce (r) = SvoFlzo Wy (20 )G(r)rs Velro +Jvo Fxe )0 (20 )G (2120 )dro (2-25)
Repeating the expansion procedure above and notating
Uecras(r) = JroF(re )ay (ro)G(rlre )drg, 1)1 (2-26)
one oblains the Born solution
on

ir) = 5 (£3+ £ Uy (1) (2-27)
1=1
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which is the series expansion solution of the wave equation Eq.(2-9). TIf the
inhomogeneities of the object is very small, the series expansion solution
will be convergent. The first N terms of the series iz called Nth-order Born
approximation solution of the wave equation Eq.(2-9) and, especially, when
N =1, is ecalled the first-order Born approximation solution

Ulr) = U ()4, (1) (2-28)
ar

Us(r) = Usi(r) = JyaFlre )W (10 )G(r]re )dry (2-29)
The squation above can be obtained from Eq.(2-21) directly, provided that U(r)
is replaced by U (r). Therefore, the first-order Born approximation requires
that JUe () |<<IW ()], i.e., the secattered field should be much =maller than
the incident field.

1f

U(r) = explyic)] (2-30)
from Eq.(2-9), we obtain the Riccati equation

VY ) +ef(r) vplr)+k3 = -F(r) (2-31)
The solution of this equation can be expressed as the sum of two termstz7l

Yir) = ¥ tr)+¥ () (2-32)
where ¥ (r) is the solution of Eq.(2-31) when F(r) = 0, and is given by

U (r) = expl¥i (£)) (2-33)

Substituting Eq.(2-32) into Eq.(2-31) and considering the equation

¥ (£)4+v¥ (2) v (£)+hd = 0 (2-34)
we obtain
v (r)429% () v (£) = -7 (£): Fh (2)-F(r) (2-35)

Multiplying both sides of Eq.(2-35) with U (r) and noticing that

vl () = -k3U; (r) (2-36)
we ohtain the following equation

(v2+k8 ) (Ui (2)¥s (1)) = ~[Flr)+e¥ (r) 9 (£) U (1) (2-37)
Eq.(2-37) is the inhomogeneous Helmholtz equation. Likewise, with the replace
of F(r)U(r) in Eq.(2-21) by [F(r)+v¥i (r) vy (r) 1 (r), the solution of Eq.(2-
A7) will be abtained

~
Ve () = Vau(2)+¥ia (x) (2-38)

where
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1

Yer(r) = ————FvoFre )k (1o )G(rlre )dro (2-39)
Ui (x)
and
1
%2 (r) = ———fravls (xo ) v¥a (o )Ui (ro )G(r|ro Ydry (2-40)
Ui (r)

Expanding repeatedly the right hand side of Eq.(2-40), the series expansion
solution of the Riceati equation will be found., Similarly, such solution is
called Bytov solution., Again, if the inhomogeneities of the object are small,
the Rytov solution will be convergent. The first-order Rylov approximation is
given by

Vie) = Vi (o) () (2-41)

I
Velr) = Ve (r) = ———fuoFlre )Ui (19 )1G(r]re Ydrs (2-42)
Ui (r)

From Eq.(2-42), it is seen that the first-order Rytov approximation requires
that |vfe (r) v¥ (£) 1<<[F(r) [, ‘that is, the rate of the spatial variation of
the phase of the scattered field must be very small., If Y5 (r)U (r) is treated
a3z n new field variable, Eq.(2-42) has the same form as Eq.(2-29), i.e., the
integral expressions of the Born and Rytov solution has the same form provided
that the first-order approximation condition is satisfied, Therefore, it is
enough to study the inverse seattering problem of Eq.(2-29) which is obtained
from the first-order Born approximation.

Suppose G{rlre) in Eq.(2-29) is a free-space Green's function, then it is
given byl 1011

exp( jke lr-ro | )
Glrlre ) = (2-43)

Ir=ro |

where |r-rol| is the Fuclidean distance between the field point r = (x,y,2) and
the source point ro = (%0 ,¥0,+%0 )+

In what follows, only the two-dimensional case (i.e., the variation of
the object function along the z axis iz assumed to be very small, and the both
the incident and the scattered fields are independent. of the 2z axis) is
studied. Then, the Green's function can be writtenl102]

J
g(rlre) = =—Ho (ko |r-10|) (2-44)

4

where He 18 zeroth-order Hankel function with the first Irind. By angular
expansion of the Hankel function, we can obtained

1 400 expl(jk (r-ro))
Ho (ko Ir-ro |) = —J AR (2-45)
n -0o Ky
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- (K’ .K"’t Elnd
' Jika 3G (2-46)

Then, Eq.(2-29) can be written in an alternate form

5
3
g

=
]

-
~~
1]

Ue (r) = JuF(ro ) (rs)g(rlxe )dre (2-47)

where the integral area s contains the cross-section of the object; and
r=(x,¥), ro = (x,¥ ). Eq.(2-47) is taken as the basic equation for the
study in this paper.

2. Backward Processing of the Acoustical Wave Scattering

let us consider the datum acquisition geometry of the diffraction
tomography (see Fig.(2-1)). Where F(r) represents the two-dimensional object
function; r = (%,¥) is a position vector in the space; ¥ = l¢ is the moving
line of the receiver, Together with the transmitter, this line is fixed on the
N1 -y1 coordinates and can be rotated around the object from 00 to 360°; © and
81 represent the angles between the y; axis and the x; axis and between the vy
axis and the x axis respectively, besides, © = ©;4n/2. Assume that the
incident wave is a plane wave travelling along the positive directien of the
vi axis, and is given by

() = thexplikese 1) (2-48)
where g is the unit vector on the direction of the plane wave insonification;

b is the complex amplitude of the plane wave (without losing generality, we
assume that Ua = 1).

Pig.(%-1) Datua acquisition geomstry of the diffraction tossgraphy

Sub=tituting Fq.(2-44) and Eq.(2-48) into Eq.(2-47) and using Eq.(2-45),
it is eagy Lo show

j +0o0 exp(jK r)
Uelr) = J F(K-ko g0 )dKs (4-49)
i -oco Ky

where
M(K-koss ) = S:F(ro)expl-j(K-koss ) ro ]dr (2-50)

Let us define
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cose;  -sinG;
Q= (2-51)
2inSy Cos8)
and make the following varisble transformaticons
r = Qr (2-52)
K = TQr! (2-53)

where 1o and r; are column vectors; K and T are row vectors; @! is the
inversion of Q; 1 = (x2,m) = [%:1,m]', where the superscript t represents
the transposition of the vector; and T = (ta:,ty). From Eq.(2-53), it is easy
shown that

s txcosB; -tysind
( (2-54)
K,\r tx 2inG +ty cose,

Using Eq.(2-46) and summing the square of Ky and the square of Ky in Eq.(2-
54), one obtains

ty = Jk3-t3 (2-55)
Differentiating Ks in Eq.(2-54) in terms of t; results in

b

dEKxy = [cos6;+ sind; 1dtx {2-56)

Ly
From the expression of Ky in Eq.(2-54), we can see that
teeing = Ky-lycosd, (2-87)
By substituting Eq.(2-57) into Eq.(2-56), the differential of K« is obtained

Ky

Ay = At (2-58)

Lty
Decomposing the vector ge in Fig.(2-1) along the x and the y axis, one finds

S0 = cos(0 t/2)it+sin(0411/2)j
= -5in@; it+cose; j {2-59)
where i and j are the unit vectors on the x and the y axis respectively.

Decomposing the vector K-kose in Eq.(2-49) along the x and the y axis and
using Eq.(2-54), we have

K-kosa = ui+vi (2-60)
where
u = tycosth —(ty-ko )sinG;

( (2-61)
v = txsing; +(ty~ko )cos0,

With Eq.(2-51), Eq.(2-60) can be rewritten in a vector form
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K-koso = (T-kose }Q! (2-62)
From Eq.(2-52) and Eq.(2-53), one shows that
JEr = jItQr = jT o (2-83)

Substituting Eq.(2-58), EBq.(2-62) and Bq.(2-63) into Eq.(2-49), we obtain
in x1~y; coordinates the expression of the scattered field

J +oo exp(jT ry )
Usfry) = — f FL(T-ko 50 )@ 1dty (2-64)
in =0 Ly

Setting i = lo and taking the Fourier transform of Uz (r;) with respect to the
variable x;, from Fq.(2-64) we find the relationship between the Fourier
transform of the measured scattered field and the Fourier transform of the
object function, i.e., the so-called diffraction-projection theorem

Jexplityle) i
e (ts,0) = Pl (T-kose )@ 1) (2-65)
2ty

From Eq.(2-65), it is easy to recover the object function F(r), that is, to
find the s=olution of the inverse scattering problem. The filtered-
backpropagation algorithm for solving F(r) was put forward by A.J. Devaney in
1982

1 2x
F(r) = ——J T e (x=in@-yoos®, xcost+yeind)de (2-66)
2n O
vhere
k& +ltg
Te(xt,¥1) = = ——F [ty ,0)H(ty )Gty , ¥ Yexpl jtex: Jdtx (2-87)
2 ke
and where
P(tx,8) = jexpl-jke lo )Us (tx,0) /ko (2-68)
Jtx 15 [tx | gke
Hits ) = | (2-689)
0 i otherwise
expljlty=ko ) (¥i-lo)]; ItxlIgko
Gltes ,71) = | {2-70})

0 1 otherwise

As there is a space-variant filter function in G(ty,y:), the Devaney’s
algorithm above requires vast amount of computation. In what follows, we will
first speed up the Pan's algorithm which has reduced the computation of the
Devaney's algorithm obviously. Then, some reconstruction algorithms of the
diffraction tomography with different datum acquisition geometries will be
studied further for the improvement of their speed and the quality.
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TTT. A STUDY OF RECONSTRUCTTON ALGORTTHAMS OF DIFFRACTION TOMOGRAPHY

1. Application of Cubic Spline Interpolation to Densifying of Diffracted Data
of Diffraction Tomography

(1) Zero-padding technique and spline algorithm
Zero-padding technique

Tn practical datum acquisition, the scattered field s (tx,0) is known
only on eome discrete values of ita variables ty and 8, The stepping lengths
of ty and 6 are usually large because of the restriction of the physical
syslem. Therefore, the resolution of the interponlation in the image
reconstruction using Fourier-domain interpolation algorithm will be poor if
the lmown points of the scattered field are not  increased. Hence, to
reconstruct high quality imnges, it is necessary to densifying the diffracted
data using some interpolation schemes, 1.e., to increase the known points of
the Fourier transform of the object function on the curvilinear coordinates
((T-komn )@ 1; T = (tx,ty), tyr = JKA-tF, Itx|{ko}. TFf Uc(ts,0) is discretized
with fixed ztepping lengths for both t: and 8, the zero-padding techniquel?!)
can be used for the densifying of the diffracted data., The densifying
procedure  is as follows: Suppose theres iz a one-dimensional N-point sequence
with a fixed stepping length of h, ¥(n), n= 0,1,2,+-+N-1. Taking the N-point
FFT of this sequence, one will obtain the N-point spectrum, Y(k),
K=0,1,2++,N-1. To densifying the sequence y(n) to L times (L is =an
integer), it 1is necessary to insert (L-1)N zerps into the high-frequency
poertion of the spectrim, Notating the zero-extended spectrum as X(k'),
k' =0,1,2,:+«+ ,IN-1, it is easy to show that

Y(k') v Ogh"¢N/2-1
X(k") =1 0 i N/2¢Ie’ {IN-N/2-1 (3-1)
Yl ~LN+N); IN-N/2¢k* {IN~1

Talking the IN-point IFFT of the spectrum, one can obtain the densified
sequence x(n') which is L times lengthened when compared with the original
sequence y(n)

1 LN-1
®(n') = —— 25 Xtk")exp[j(2n/IN)n'k’ ]
IN k'=0
1 N/2-1 N-1
= ——( £ Y(k)expli(2r/INIn'k]+ £ Y(k)explj(2r/IN)n'k]
IN k=0 k=N/2
cexpl j(2n/IN)(L-1)Nn"1}, (n’ = 0,1,2,-+«+ ,IN-1) (3-2)

Let n' = Ln, the equation above becomes

1 N/2-1 N-1
¥(ln) = —{ ¥ Y(k)expli(2n/IN)Ink]+ £ Yi(k)expli(2n/IN)Lnk])
IN k=0 k=N/2



1 1 N-1 1

2 —(— I Y(Kk)exp[j(2n/Nink]) = —y(n) (3-3)
L N k=0 L
1.8.
1
¥(Ln) = —=y(n) (3-4)
L

It i= seen from Eq.(3-4) that the densified sequence keeps linearly
unchanged on the points of the original sequence, and between each successive
two points of the densified sequence, L-1 points are inserted. The basic idea
of the zero-padding technique for densifying a sequence ig that the shapes of
the spectra of the sequence before and after the densification are kept the
same. The densifying procedure above for the cne-dimensional sequence can be
rasily extended to the fwo-dimensional case.

Spline algorithm

Tt can be seen that the zero-padding technique above requires still a lot of
computation, for in thie technique IN-point IFFT of the LN-point zero-extended
spectrum must be taken., TFeor instance, for a 128x128 pixel image reconstructed
from the densified 64x128 diffracted data, the Lime for the densifying of the
diffracted data is about 63% of the total time of the image reconstruction. In
order Lo reduce the tims for the densifying of the diffracted data, cubic
spline interpolation is used,

The ecubie spline interpolation is a high precision interpolation method,
but it is usually complex and time-consumed( 1041 | However, when applied in the
mid-point interpolation of a sequence with a fixed stepping length, which is
the case for the densifying of the diffracted data, it is less complicated and
requires less amount of computation. Tn the following, the procedure for the
densifying of a one-dimension sequence using cubic spline interpolation will
be given in detail. As before, the densifying procedure for one-dimensional
sequence can be extended to the two-dimensional case directly,

If 8(x) C?[a,b] (i.e., the second-order differential of S(x) is
continuous  in  intermal [a,b] and S(x) is the polynomial of degree three in
each subinterval [z ,¥s+1] (where a = x3 @<+ ¢ = b is the given nodes of
S(x), S8(x) is called the cubic spline function on nodes x; ,x2, ' ,xn. If the
value ¥({n) is given to S(x) on the node X, n = 1,2,-v+,N, so that

S(xa) = ¥n,; (n = 1,2,' e |N) (3-5)
8(x) is ecalled cubic spline interpolation function.

From the cubic Hermite interpolation function, the expression of S(x) in
the subinterval [xn,%s+1] can be derived( 1051,

(x=3xna1 )2 [ha+2(x~Xn )] (x=xn )2 [ha+2(Xns =) ]
8(x) = yin)+ vintl)
hi hi
(X=%ns 1 )% (X=X ) (x=xn )2 (x-Xne1 )
+ g + Mo+ y (3-86)
hh h#

where hy = Xas1-%ai and my represents the first-order derivative of S(x) on
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the node xp, With the condition that the second-order differential of S(x) on
the node x5 are continuwous, n = 2,3,-++ N-1, one will see that ms satisfies
the following system of linear algebraic equations

aniﬂn-l+2m+ﬂnmnll = gnl (T\ = gjal"'lN-I} fa"T}
where
he
Ag = ———————— (3-8)
ha- 1 +ha
hn-—l
My = — (3-9)
hn-1+he
y(n)-y(n-1) y(n+l)-y(n)
Zn = 3[An +My, ] {3-10)
hn-1t ha

Considering the nature end-point condition
"' (x1) = 8" (xy) =0 {3-11)

we obtain the end-point eguations for m; and my

Zmp4me = &
{ (3-<12)
y-r+2my = g
where
y(2)-y(1)
g = {3-13)
hy
v(N)-3(N-1)
gy = 3 (3-14)
hy-1

Suppose y(n) is a N-point sequence with fixed stepping length of h. If
the cubic spline function is used for the mid-point interpolation of y(n) in
the subinterval [Xa,Xa+:], the cubic spline function will be of a simple form

h 1 h
Sixa+=) = =[¥(n)+y(n+l) 1+-(mg-maey ) (n = lazl"' ,N-1) (3-15)
2 2 8

where m, satisfies the following systems of linear algebraic equations

1 1
-l'lln-l"'zmn"""mnit = En (n = 2,350, N=1)
2 2 (3-18)

2m +me = 2
My-y+2my = Zy

which iz simplified from Eq,(3-7) and Eq.(3-12), where



3

EBn = —-—-f!f(n"'ﬂ-'}'(ﬂ'-ﬂ], (n = 2,3,-+» ,N-1)
2h
3
gy = —([y(2)-%(1)] (3-17)
h
3
gy = —[y(N)-y(N-1)]
h

Eq.(3-16) can be rewritten in a matrix form

AM = g (3-18)
where
2 T 0 ... 00 0
/22172 ... 0 0 0O
A=]01/22 0o 00 (3-19)
00 0 1/2 2 1/2
0 0 0 o 1 2
™M= (m,me, - ,m)t and £ = (1,82, ,8gx ), where the superscript t

represents the transposition of the vectors.

From the coefficient matrix Eq.(3-18), it can be seen that Eq.(3-18) is a
diagonal dominant tridiagonal system. Therefore, Eq.(3-18) has a unique
anlution and can be solved by the following methodl 105]

(1) Find auxiliary parameter b

by = 1/2 _
( {3-20)
ba = 1/{4<bn-y1); (n = 2531"‘ ,N“l)
(2) Caleculate another auxiliary parameter aa
ar = (1/2)
{ 8n = (2gn—~an-1)bn (3-21)
ay = (gy-an-1)/(2-by-1), (n = 2,3,--+ N-1)
(3) Determine ma from a, and b
my = Ay
[ (3-22)
|'|'|r| = aﬂ—hmﬂ|1j {n = N-],"' |2’I)

Substituting ms obtained above into Eq.(3-15), one finds the sequence
which is two-times Jlonger than the original one. Tf n =N, we set
S{xnx+h/2) = S(xy~-h/2). The lengthened sequence can be further densified
provided that the lengthened sequence is taken az the original seguence and
the densifying procedure above is repeated. A= a contrast, for a 128x128 pixel
image reconstructed from the B-fold densified Bdx128 diffracted data, the time
used now is only about 29% of that used by the complete image reconstruction.

(2) Computer simulations

{h) OGray level asaignments



Fig,(3-1) is the head phantom used in our computer simulations., Fig,(3-
11{a) is the 128x128 pixel photograph of the phantom taken from the screen of
monitor, and Fig.(3-1){(h) is the gray level assignments of Fig.(3-1){a). The
line y = -0.605 in Fig.(3-1)(b) passes through three smallest ellipses in the
phantom and hence; the reconstructed values on this line can be used for the
evaluation of the resolution and then the quality of the reconstructed images.
Therefore, in our computer simulations hereafter, the comparisons between the
reconstructed  values and the gray level of the phantom on this line for all
reconstructed images will be given,

ta) (b)

Fig.(3-1] 2] The head phantom used in our computer simulations {a) Photogrzph (b) Gray leyvel assignesnts

In order to evaluate the quality of the reconstructed images
quantitatively, it is necessary to find an ohjective evaluation standard.
Unfortunately, there is no a generally accepted standard at present. 1In this
paper, three picture distance measures which are in common use are adopted:
normalized root mean squared picture distance measures d;, normalized mean
abszolute picture distance measures ry and worst case picture distance measures
e (971, The definition of these picture distance measures for a NN pixel
image ig as follows

dy = (3-23)

N N
2 2 Iri-pyl
isl =1
I (3-24)
N N
Z T Imsl
i=1 =1
2 = max |Rys-Pisl (3-25)
1{T¢N/2

1{JEN/2

wher'w



1

Rig = —(r2z, 2042001, 22421, 2541402101, 2341 ) (3-26a)
4
1

Pij = —(p21,zatp2rvnzatper, 20 vat i, 2341) (3-26b)
4

(IlJ = 1;2’31"’ |N/2}

n; and gy in above equations represent the gray level of the pixel on the
ith row and the jth colimn of the reconstructed images and the phantom
respectively; ¥ and P are the averages of the gray level of the reconstructed
images and the phantom respectively, and they are defined by

1 N N

Fz—— 3 ¥ ng (3-27)
N i=1 j=1
1 N N

Pz—2 T n (3-28)
Nz i=1 j=1

The above three picture distance measures reflect the different aspects
of the errors of the reconstructed images: di is sensitive to the big errors
on individual points, 1 relates the soccumulation of small errors, and e
indicates the maximum error of the elements (R;;) of the reconstructed images.

If the averages of the reconstructed images are different from that of
the phantom, average adjusted picture distance measures can be used for the
quantitative evaluation of the quality of the reconstructed images(A3l, The
average adjusted picture distance measures arve calculated in the following
way: First, the averages of the reconstructed images and the phantom must be
found from Fq.(3-27) and Eq.(3-28) respectively, then, the difference between
r and p is added to every pixel of the reconstructed images. Finally, the
picture distance measures d;, ri; and ey of the average adjusted images are
caloulated using Eq.(3-23) to Eq.(3-25) and are notated as d2, 12 and e
respectively, From the definitions of the average adjusted picture distance
measures, it is seen that for these picture distance measures get rid of the
factor that the averages of the reconstructed images are different from that
of the phantom, they will reflect better the quality of the reconstructed
images shown on the monitor screen (the brightness of the monitor, i.e., the
averages nf the reconstructed images shown on the monitor screen, ecan be
adjusted arbitrarily). Tf the reconstructed imagea are the phantom itself, it
is easy to show that all the picture distance measures will be zeros.
Therefore, the higher the quality of the reconstructed images is, the smaller
the picture distance measures of these imsges will be, Moreover, for the
comparisons of the maximum and the minimum gray level of the reconstructed
images with those of the phantom respectively, the maximum and minimum
reconstructed values of the reconstructed images, max and min, are given (the
maximmm and the minimum gray level of the phantom are 1.0 and 0.0

respectively).

Fig.(3-2)(a) is a 128128 pixel image reconstructed directly from the
64%x128 diffracted data. Fig.(3-3)(a) and Fig.(3-4)(a) are the 128x128 pixel
images reconstructed with the diffracted data densified from 6idx128 to 128x512
using the zerc-padding technique and the cubic spline interpolation
respectively, Fig.(3-2)(b) to Fig.(3-4)(b) are the figures of the conparisons
of the reconstructed values (real line) and the real wvalues (dashed line) on
the line y = -0.805 ({see Fig.(3-1)(b)) corresponding to Fig.(3-2)(a) to

o Gilfe



Fig.(3-4)(a), respectively. Tahle (3-1) shows the comparisons of the
"distances" of the reconstructed images and gives the CPU processing time t
and '  of the VAX-11/730 computer for the image reconstruction arxl for the
densifying of the diffracted datas respectively,

The computer simulations above show that: 1) the quality of the images
reconstructed by the densifying of the diffracted data (see Fig.(3-3)(a) and
Fig.(3-4)(a)) is much higher than that of the image reconstructed directls
from the diffracted data without densifying (see Fig.(3-2){a)). 2) The qualil:
of the image reconstructed by the spline algorithm is comparable to that of
the image reconstructed by the Pan's algorithm (the densifying of the
diffracted data using the zero-padding technique). 3) The computer CPU
processing  time taken by the image reconstruction using spline algorithm 1is
about 1/2 of that taken by the imnge reconstruction using the Pan's algorithm,
and the time for the densifying of the diffracted date using the spline
ylgorithm is only about 1/4 of that when using the Pan’s algorithm (it is
worth noticing that the longer the densified diffracted data is, the smaller
the ratio of the CPU processing time for the densifying of the diffracted data

bhetween the spline and Pan’s aldorithm will be). Therefore, the spline

a1 ¢

srithm iz a more effective method for the image reconstruction of the

iffraction tomography.

{b)
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(3-3) Zero-padding |,28].11].39].28].11].39].87]-.22x10-t |4.,1|2.6

{3-4) Cubic spline |.28|.12(.411.29].12]|.41].94}-.31x10-1]2,1|0.6

2. Transmisgion-Reflection Diffraction Tomography

(1) Diffraction-projection formulas and relationships between rectangular
curvilinear coordinates

JE

Fig.(3-5) Datun acquizition systea of the THDCT

Fig,(3-5) is the datun acquisition system of the TRDCT,it is the same as
Fig,(2-1) except that the transmitter is also taken as the receiver and is
looated at the line 3 = <lg., In order to receive the transmission and the
reflection waves sinultaneously, a pseudo-continuous wave must be generated,



i.e,, a sinusovidal wave chain g2enerated must be so long thal it may be logked
as a continuous wave, but will be not too long that the measurement of the
reflection wave is affected. This condition can be satisfied by properly
rdjusting the length of the sinusoidal wave chain and the distance lp. In the
datum acquisition, for each given 6, 2N samples can be obtained by two
transducers on the lines yi = +l¢ and yy = ~lg respectively, If @ changes from
00 to 3600 by N angles, 2(NxN) diffracted data can be acquired, From the
2(NxN) diffracted data, object function can be recongtructed by the TRICT,

The diffraction-projection formula for the transmission signal is the
same aus Bg. (2-65)

o Jesxpljtyle)
Ty (ty ,8) = F[{T-kose )@ ! ] {3-29)
2ty

Imagining that in Fig.(3-5) the plane wave is insonified in an opposite
direction, the signal received on the line y3 = lg¢ will be reflection signal,
Then, it is easy to show that the diffraction-projection formula for the
reflection signal will has the form

=7, Jexplityle)
Ugr (5 ,0) = F[({T+kose ) ¥ ] (3-30)
21'-y

where Uz (te,8)  and ﬁsr (tx,8) represent the Fourier transform of the
transmission and the reflection signals respectively; F[(T-kogo )@ '] and
Fl(T+kosao )@ 1] are the Fourier transform of the object finetion evaluated on
the curvilinear coordinates [(T-kesp )@ '; T = (tg,ty), ty = J k3 -t , [txlgke)
and ((T4ese )@ ' T = (te,ty), ty = JK3-t3, |tslgko) respectively.

Assume that W = (u,v) represents the position vector on the rectangular
coordinates u-v in the gspatial Fourier domain of the object fimetion, From the
vector equations W = (T-kese)@ ! and W = (T+keso ) !, two  relationships
between a point (u,v) on the rectangular coordinates and a polnt (4x,8) on the

curvilinear coordinates can be Found

= Lysin®+(ty-ky )oosO
{ {3-31)
v = =lycos@+(ty-ls )sin®

L1

and

u = Lsing+ Ly the Jeosd
( (3-32)
v = —~tycosB(ty+ke )Sine

Next, we will derive the relationships between a point (t;,8) on the
curvilinear coordinates and a point (u,v) on the rectangular coordinates from

Fig.(3-6)(a) and (b) show the relations among the vectors W, T and kesg
for the transmission and the reflection signals respectively. & is the angle
between Lhe vectors W and W-T, and @ represents the angle between the vector W
and the positive direction of the u axis.
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(&) (h)
Fig.(3-8) The relationg ssong the vectors ¥, T and ¥ege (a} for the tranewiseion gigeals (b] for the reflection eigmls

From Eq.(3-31), one obtains
U 4y? = R+ (ts ko )? = LR3+KE-tR+IB -2k ty = 2k3-2Kko by (3-33)

From the equation above, one can solve ty

2KR -2 =2
ty = (kK -(———-—)2 {3-34)
2k

From the Fig.(3-8){a), the relalionship among the angles 8, & and gis clear

a = m-(x-8) (3-35)
where
|ul +y?
o = gos ! (——mn—) (3-36)
2ke
Y
B = Lyt {—) (3-37)

L]
Similerly, from Eq.(3-32), we obtain
u? +v2 = 2K 420 by (3-238)

Solving 1ty from the above equation, one finds that the expression for ty is
the same as that in Eq.(3-34)

20eg —u2 -v2
ty = |[kK§-{— )2 {3-39)
2k
From Fig.(2-6)(b), another relationship among 6, & and B can be shown
0 =xX+83 (3-40)
Combining Eq.(8-34), Eq.(3-35), Fq.(3-39) and Eq.(3-40), one obtains the group

of the relationships between a point (t5,9) on the curvilinear coordinates and

r 3=10:



a point (u,v) on the rectangular coordinates for the transmission and the
reflection signals respectively

2k - =2
ty = | ~(—m——)?2
2ko
(3-41)
L ¥ ,| u 42
8 = nttg- ! —)—cos ! [ ———)
$] Zliu
and
2lcd 12 —y2
t: = |K§-(— )2
2ko
: (3-42)
v [113 +v2
0 = ty-t (—)¥cos ! (————)
u 2k

(2) Image reconstruction

From Tq.(3-29) and Eq.(3-30), one will obtain the Fourier-domain
coverages of Lhe chject funclion for the TRDCT (see Fig. (3-T)).

Rig. [3-7) Paurier<dnmain noversges of the TRAOT

In this Tigure, the circle 3 is formed by the track of the point (u,v)
on the Fourjer-domain rectangular coordinates when ty varies from -ke to +ke
with @ fixed for € = @' and 6 = @'+ respectively. The real half and the
dashed half of the ocircle are corresponding to Eq.(3-31) and Eq.(3-32)
respactively. The interior arvea of the eircle C: which is centered on the
crigin of the coordinates and with a radius of 2ks is oovered hy the
diffracted data as 6 varies from 00 to 3602 (the interior area of the rcircle
Oy 15 covered by the transmission data, and the ring area between the circles
€1 and C; 14 covered by the reflection data). From Fig.(3-7) it is seen that
as  the TRDET ecan provide more high-frequency information of the object
function than the conventional diffraction tomography, it is preferable that
the TRDCT will give a higher-resolution image reconstruction.

To reconstruct the images using the IFFT, it is required to calculate the
Fourier transform of the object function on the rectangular grids of the
rectangular coordinates from the Fourier transform of the object function on
the curvilinear ceoordinates, F[(THwse )@ '], using some Interpolation scheme.
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Hera, the commonly used bilinear interpolation technigque is employedl?tl

Nyg—1 Ng-1

thite;ay = T (a1 505 Yhu (tx=txi )ha (6-0; ) (3-43)
i=1 J=1
where
| b=ty |
1o ——————& [ta-tei [¢ALs
hy (tx—txi ) = [ Atx (3-44)
0 ; otherwise
1e-6; | _ _
- — ;|88 [{A8
he (6-6;) = [ Ae (3-45)
0 ; otherwise

where both t: and 8 are constant; 0 (txi ,9; ) represents the discrete Fourier
transform of the measured scattered field on the rectangular grids (ty; ,8,) of
the curvilinear cooordinates; E&{t;jGJ is the Fourier transform of the
seattered field evaluated on the point (tx,8) of the curvilinear coordinates
and is corresponding to the rectangular grid point (u,v) of the rectangular
coordinates, Nexy and Ne are the numbers of the discrete points of ty and 6
respeclively. The procedure of the bilinear interpolation is described in the
following: first, the point {L¢,8), which is corresponding to the rectangular
grid point (u,v) of the rectangular coordinates, of the ecurvilinear
coordinates will be found according to Eq.(3-41) or Eq.(3-42), then the
Fourier transform of the scattered field on the paint (ty,8) will be
calculated by Fg.(3-42), After multiplying by a function facltor shown in
Fr. (3-29) or Fq.(3-30), the Feurier transform of the scaltered field on the
point (t:,8) is assigned to the corresponding rectangular grid point (u,v) of
the rectangular coordinates (if the point (u,v) belongs to the ring area
betveen the circles G and €2 shown in Fig.(3-7), the point (t:,8) is
caloulated using Eq.(3-42); and if it belongs to the interior area of the
cirele Cp, (tx,B) is caleulated using Fq.(3-41)).

In order to diminish the Gibbs oscillation phenomenon in  the
reconstructed images, Bleckman windowt 1961  jg is applied to the Fowrier
transform of the aobject function on Lhe rectangular grid points of the
rectangular coordinales. The Blackman window is defined by

2nr dnir
+0.,08cos P IWI¢2ke
ko iko
b(W) = { {3-46)
0 o 0

0.42-0D.5c0s

where

r = Jur e +2ke (3-47)

Taking the two-dimensional IFFT of the windowed Fourier transform F(W)b(W),
one will reconstruct the image of the object fumction.

Tt should be poticed that although the higher-frequency information of
the object function is used in the TRDCT and hence the higher resolution
images will be reconsiructed, the high-frequency noise is accompanied with the
image reconstructions of the TRDCT. In order to solve the high-frequency noise
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preblem, nonlinear-smoothing image processing techniquel 371 is adopled, By
properly choosing smoothing weights and threshold in the nonlinear-smoothing
process, not only the high-frequency resolution of the TRDCT is kept, but the
high-frequency noise in the processed images is mostly excluded. The
nonlinear-smoothing image processing technique is described briefly in  the
following:

Suppose a pixel in the reconstructed image is Vy, and eight pixels which
surrourid Vi iz Vi Lo Vy and is arranged as follows

Ve Vi Vs
Va Vi Vg
Vs Vs Vo

Af'ter the nonlinear-smoothing processing, the density of the pixel V, becomes

5 9
Wy Vi +W; 2 i Vi +W; E i Vi
i=2 i=6
{3-48)
5 9
Wy W, E fi4W; 2
i=2 i=6
where
15 IVi=Vi It
B o= (3-49)

0; otherwise

where Wy, W and Wy are smoothing weights, and t is the threshold (these
quantities are all non-negative and are determined by experiments), If Vi is a
boundary point, for some values of i, Vi will be undefined. Tn this case, we
simply set B = 0.

(3) Computer simulalions

Fig.(3-8)(a) is the 128x128 pixel image reconstructed by using the
Fourier-domain bilinear interpolation algorithm of the oonventional
transmission diffraction Lomography from the 64x128 diffracted data. Fig.(3-
9)(a) is the 128x128 pixel image reconstruclted by using the Fourier-domain
bilinear interpolation reconstruction algorithm of the TRDCT from the
2(64x128) diffracted data, Fig.(3-10)(a) is obtained by the nonlinear-
smoothing processing of Fig. (8-9)(a). Tt should be noticed that the physical
dimension of the phantom used in the image reconstruction of Fig.(3-9)(a) is
anly 12I2 of that used in the image reconstruction of Fig.(3-8)(a) (the
frequency sampling intervals for the image reconstructions of Fig.(3-8)(a) and
Fig: (3-9)(a) are {2k /128 and 2k /128, and the spatial sampling intervals are
IPr/%e  and ok, respectively). Therefore, although the high-frequency
resolution of Fig.(3-8)(a) looks almost the same as that of Fig.(3-9)(a), the
high-frequency resolution of Fig.(3-9)(a), in actual, is much higher, From
Fig,(2-10)(a), it is shown that the nonlinear-smoothing image processing
diminishes the high-frequency artifacts in Fig.(3-9)(a) while keeps the higher
high-frequency reszolution of the TRDCT (here, the smoothing weights Wi, Wz and
Wi are 9, 4 and 1, respectively, and the threshold is chosen as 0.05),

Fig.(3-8)(b) to Fig.(3-10)(b) are the comparisons of the reconstructed

values (real line) and the real values (dashed line) on the line y = -0,605
(see TFig.(3-1)(b)) corresponding to Fig.(3-8)(a) to Fig,(3-10)(a),
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the images reconstructed by the TEDCT and then processed by the nonlinear-
amenthing image processing technique are not only of higher resolution, but of
higher quallty when they are evalualed by the imsge gualily criteria of this
paper.

Table(3-2) The eoaparisonz of tha “igtancec” of the racorstrosted inages

Figure | Specifications ] ro| ey ] d2| rz] ez |max min

{3-8) | Transmiesion CT .290.12],41].29].12].41],94|~.21x10-!

(3-9) TRDCT .291.12}.40|.29|.12].40|.98|-.27x10-!

(3-10) | TRDCT & smoothing [.29(.11|.40(.29(.11(.40].98{-.17x10"!

x 1 Fourier-Damain Tnterpolation Reconstruction Algorithm for  Synthetic
Aperture Diffraction Tomography

(1) Ragic principle

The datum acquisition geometry of the SADCT is shown in Fig.(3-11). VWhere
Lthe x-y coordinates are fixed in the space; Ly and Iy are the transmitting and
the rpeceiving lines along which the transmitter and the receiver can be moved
respectively; these two lines ere parallel and d iz the distance between them;
F(r) represents the two-dimenszional object function of the object located
between [4 and Ly and centered at the point (0,d4/2); = represents a cross-
section of the chjert 1o be imaged,

%

ect
06}6;; ) R_a:et'tfer

od) Y
' 7= Receitrir
bime | bject ms:isectt'm S| Lne s

Pig.(3-11) Dstus xequisition geomstry of the SADCY

The transmitting and the receiving Lransducers in Fig.(2-11) are immersed
in the scholess water tanker and their coordinates on 4 and Le are indicated
by % and %, respectively., For each fixed position of the tranamitter, the
receiver can be moved to N positions along l.. Therefore, if the transmitter
ig moved to N positions along Th, NxN diffracted data can be obtained. If the
measuring system is rotated around the object for 90 (or the measuring system
ia fixed, the object is rotated 900 arowmd its ecenter in an opposite
direction) and the datum acquisition procedure above is repeated, another NxN
diffracted data csn be obtained. From these two sets of diffracted data,
images of the object function can be reconstructed.

In what follows, the diffraction-projection formulas for the SADCTIS91]
will be found from the datum acquisition geometry shown in Fig.(3-11} and from
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the integral solution Eq.(2-47) of the scattered field. Assume that the
incident and the scattered field on a space point r = (x,y) produced by the
Lransmitter located at the point (x,0) on L« are U (rjxx) and Us(z;x)
respectively, According to the angular spectrum expansionf!971, the integral
expression of the incident field U (r;0) on the space point r when the
tranemitter is located at the origin of the coordinates can be determined. For
r = (x,0), the incident field U (r;0) will be notated as U (x,0:0), and it
will represent the field on Ln when the source is located at the origin of the
coordinates. Taking the Fourier transform of U (x,0:;0) with respect to the
variahle x, and notating the result as Ay (ky ;0), There will be

oo
Mdlke) = f  w (x,0;0)expl-jhex)dx (3-50)
-0

Taking the PFourier transform of Ui (r:0) with respect to the variable x and
leaving the variable y as a parameter, one shows that

+00
Aclkes¥i0) = w (230)expl-jhex)dx (3-51)
-0o
Thus, U (r;0) can be expressed as a Fourier integration of Ag (k;y;0)
1 400
W (r;0) = ——J A (ka3 ¥ 0)exp( ke x ) dlg {3-52)
2n -oo '

In the source-free area, the incident field U (r;0) satisfies the following
Helmholtz equation

vl (3 0)4K3U (30) = 0 {3-53)

From the equation above, the boundary-value problem of A:(kxiy;0) can be
formed

d* A (kx 3y 0)

+(k3 k% Ay (kx3¥30) = O
dy?
{ {3-54)
At (kx 1¥i0) ly=0 = Ar (kx:0)
Solving Eq.(3-54), we have
At (kx 3 ¥;0) = A; (I ;0)exp( jkyy) (3-55)
where
ky = .IkS—ki {3-566)
Substituting Eq.(3-55) into Eq.(3-52), one finds
1 +00
w (r;0) = ——J A (ks ;0)expl ji r)di, (3-57)
. oo
where the vector K = (kx,ky).

If the transmitter is located at a point (X i0) on the transmitting line
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Lt , Eq.{3-50) can be changed accordingly to

+00
Ag (kg sxe) = w (x,05% Jexp(=jkex)dx (3-58)
~00

As Ui (x,05x¢) = Ui (x=x¢,0;0), from the equation above one ecan find thal
A (kx i Y = Ay (ke 3 0)exp(=jkaxe ) {3-59)

Then, using Eq.(3-57), the integral expression of the incident field on a
space point r then the transmitter is looated at the point (x ,0) on Ly can be
obtained

1 0¥
wileix ) = —=F Ay (kg Yexp(=jksx Jexp( K p)dkg (3-60)
o’ -oo

where Ay (ky ) stands for A (ky ;0).

Substituting Eq.(2-45) into Eq.(2-44), one can obtain the integral
expression of the Green’s function in the two-dimensional free-space, Renaming
the integral wvariable K to tyx and then substituting both the integral
exprossion and Eq.(3-80) into Bq.(2-47), the seattered field on a point (x¢,d)
on the receiving line I: when the transmitter is located at the point (%, ,0)
agan b& obtained

1 +oo oo Jexp( jtyd)

A

(2r()2 —o0 -0n0 2ty

Ay (lex)

ug {Xxz 3300 ) =

s {.js F{Ep }E?\'P[‘.j (E—I_”' T'n }dﬂu }E‘Kp[J(tx.‘fr S e )dt:dkx {3-61)

{tx, by ), and

11

where T

ty = ,.I ké ~t% (3-62)

Taking the two-dimensional Fourier transform of Us (¥ j-x:), we obtain

~ Jexpljtyd)
Vo (tatke) = —————A: (e ) fiFlro Jexp[ =3 (T-E)* ro Idre (2-63)
2ty

Taking into account the spatial filter characteristics of the aperture size of
the receiver for the scattered field, Ar(tz), the Eq.(3-63) can be slightly
modified to

» jexpl jtyd)
Pga (tyks) = A (te )AL (hex .‘J;F{Lﬂ )E—"\'P{'.j (I"h} To ]dBl (3-64)
2ty

where D,s(tsiky) is the Fourier transform of the received scattered field,
From the above equation, the diffraction-projection formuila for the SADCT is
obtained

. 2ityexp(-jtyd)
F{I_-E) = i P‘ a ('lx ;l{; J (3-65)
Ar (tx ) A (ky)
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where
FIT-K) = fiF(ro)expl-3(T-K) o Jdro (3-66)

is the Fourier transform of the object functinn on the curvilinear coordinates
[T-3; I« I€kko, Ilix [€ke ) .

To make the Fourier domain of the object function covered sufficiently by
the diffracted data, il is necessary to rotate the objecl around its center
for 90°, Similarly, the diffraction~-projection formula for the 90° rotated
object can ba {ound

2jtyexpl-jtyd)

~

Pon (tx jke) (3-67)

Fl(T-))Q] = -
A (tx )A: (Jeg )

where F[(T-K)Q) is the Fourier transform of the object funection on the
curvilinear coordinates [(T-E)Q; [tx|¢ke and |kx ko] after the 90° rotation
of the object: Pep(tyiks) is the Fourier transform of the measured scattered
field after the rotation of the object; T and K are row vectors; Q is the same
as that in Eq.{2-51) with & = 900,

Eq. (3-68) and Eq.(3-67) build up s group of the relationships between the
Fourier transform of the measured scattered field and the Fourier transform of
the object function on the curvilinear coordinates. From those relationships,
images oan be reconstructed,

(2) Fourier—domain interpolation reconstruction algorithm for the SADCT

SRS,

Assume that W = (u,v) is a veotor on the rectangular coordinates of the
Fourier domain, From the vector squations W = T-K and W = (T-K)Q, one will
obtain the relationships between a point (u,v) on the rectangular coordinates
and a8 point {1z .ke) on the curvilinear coordinates

e

[ (3-68)
v = ty-ky
= t;- "‘ky

[ {2-69)
v = =tttk

where |txl¢ke and Ilaldko. If Ite]dke or lke|>ka, the scattered field is
actually an attenuated fisld. When the receiving line ly is placed far enough
from the object, the effects of the attenuated field are negligible. From
Eq. (3-68) and Eq.(3-69), Fourier-domain eoverage areas A (before the rotation
of the object) apd B (after the 800 rotation of the ohject) ecan be
obtained! 991 | as iz shewn in Fig. (3-12).

In order to carry out the Fourier-domain interpolation, it is necessary to
find a group of relationships between the curvilinear coordinates and the
rectangular coordinates. From Bq. (3-56) and Eq.(3-62), it is shown that

tE+td = I3 (3-70)

k2 +k3

ké (3-71)

and from Eq, (3-68), one has
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(u-ty )2 +(v=ty )2 = I3 (3-72)
(
(ukiex )2+ (vitky )2 = k3 (3-73)
v
2ot ftho
/K 7\
Al ': —s U
\ A
A\
B
=L

Pig.(3-12) Rourier-donain coveragn areas & zad 0 of the BADCT. The area A and the arez B represent the coverages hefore and after
the 90% rotation of the ohject reapsotisaly.,

Eq.(3~72) represents a circle centered at (tx,ty) with a radius of ke on the
Fourier-domain rectangular coordinates. From Eq.(3-70), it can be seen that
the trace of the center (L, Ly) of the circle determined by Eq.(3-72) is also
a circle with a radius of ks, but with its center on the origin of the
coordinates. For ty is aluays greater than zero, the circle represented by
Eq.(3-7T0) is the upper half circle, as is shown by the dashed line in Fig.(3-
13). Similarly, Bq.(3-73) reprezents the circle centered at (-ky,-ky) and with
tha radius of e in the Fourier-domain rectangular coordinates, and the trace
oft the center {(~ky,-ky) of the circle forms the lower half cirele in Fig, (3~
13) whirh is ecenlersd at the origin of the coordinates with a radius of ke.
The TFourier-domain coverage ares A in TFig.(3-12) ig formed by the set of
points (u,v) which satisfy the Eq.(3-72) and Eq.(3-73) similtanecusly. From
Eq.(3-72) and Eq.(3-73), tx amd ky can be solved regpactively in terms of a
givan point (u,v). Considering Fig.(3-13), one will obtain the relationship
between a point (t: ,kx) on the curvilinear ccordinates and a point (u,v) on
the rectangular coordinates in the different quarters of the rectangular
coordinates of the Fourier-domain coverage area A.

tu—ﬁ;& tlr'-ﬁ ES
F'l f' . -‘:1

CBe-R, AL + k; =4
(ut Re)'s (e k)% 2
with dx fixed

Fig.[3-13) Relationchips betusim the curvilinsar mnd the rectangular coordinntes

If the point (u,v) is in the first or the third quarter, thers will be
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!

By = —(u-qu)
2.
[ (2-74)
1
ky = = =—={(utqy)
2
where
A%k
qu = vl -1 (3-75)
2 +v2 '

It the point (u,v) is in the second or the fourth quarter, we will show that

_ 1
tx = —(utq)
2
[ (3-76)
1
Bx = = —(u-qu)
2

From Eq.(3-69), we have
{u-ty )2+ (vats )2 = k3 (3-77)
(
(u+k}- }2‘}'(\""‘{: )3 = ka (3—'78)

"

Similarly, the set of points {u,v) which satisfy Eq.(3-77) and Eq.(3-78)
gimultaneocusly will form the Fourier-domain coverage area B, as is shown in
Fig.(3-12), In the same way, the relationship between the curvilinear and the
rectangular eoordinates, which is similar to what iz shown in Fig.(2-13), can
be obtained from Eq,(3-77) and Eq.(3-78). Then, the relationship betwsen a
point  (tz,kx) on the curvilinear coordinates and a point (u,v) on the
recltangular coordinates in the different quarters of the reectangular
coordinates of the Fourier-damain coverage area B will he found. TIf the point
(t,v) is in the Ffirst and the third quarter, it is easy to show that

1
by = - —{v-qa)
2
( (3-79)
1
ly = —(v+qa)
2

vhere

{3-80)

If the point (u,v) is in the second or the fourth quarter, we will obtain
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1
- —{v4qe )
2
( (3-81)
1
—{v-q2 )
2

tx

ks

From Eq.(3-74), Eq.(3-76), Eq.(3-79) and Eq.(3-81), first, on the
curvilinear coordinates, the positions of the rectangular grid points of the
Fourier-domain rectangular coordinates can be determined; and then the Fourier
transform of the object function on the rectangular grid points of the
rectangular coordinates can be calculated using the  Fourier-domain
interpolation procedure, w«hich is deseribed as follows: given a rectangular
grid point  (u,v) of the rectangulsr coordinates, one should judge which of
Fourier—domain coverage areas (A or B) this point belongs to. IT it belongs to
the area A, the corresponding point {(t:,ky) on the curvilinear coordinates is
determined by T, (3-T4) or Eq.(3-76); nand the Fourier transform of the object
function on this point will be caleculated from the known discrete diffracted
data wusing some ioterpolation scheme and will be taken as the TFourier
transform of the object function on the rectangular grid point (u,v) of the
rectangular coordinates, Tf the peint (i,v) belongs to the area B, the
corvesponding point  (te,ks) Is found by Eq.(3-78) amnd Eq.(3-81), and
similarly, the Fourier transform eof the object function on the peint (u,v) ecan
be caleulated using some interpolation scheme, Tf the point (u,v) belongs to
the area AMB, the average of the interpolation results above is taken as the
Fourier transform of the object function on the point (u,v). Because the
distribution of the points on which the discrete diffracted data are lmown is
very uneven in the Fourier-domain coverage areas A and B of the SADCT (it is
the ease for both the low- and the high-frequency portions and especially for
the vieinity of the boundaries of the areas A and B), te improve the quality
of the reconstructed images, special consideration must be taken for the
interpolation of the points near the boundaries of the areas A and B, This
will be demonstrated in detail later. Applying the Blackman Window in FEq.(3-
48) to the Fourier tranaform of the object function on the rectangular grid
pointe of the rectangular coordinates and taking the two-dimensional TFFT, the
images of the object function will be reconstructed.

(3) Compulter simulations

In the following computer similations, the image reconstructions of the
SARCT for  both the Fourier-domain interpolation algorithm and the
interpolation-free algorithm proposed by Dr. D. Nahamoo et al. are given, and
the comparisons of these two algorithms are carried out.

Fig,(3-14){a) iz the 128x128 pixel image reconstructed from the
2(128x128) diffracted data using the Fourier-domain nearest-neijghbor
interpolation’®1], Fig.(3-15)(a) is the 128x128 pixel image reconstructed from
the =ame set of diffracted data using the interpolation-free algorithm.
Fig.(3~14)}(b) and Fig,(3-15)(b) are the comparisons of the reconstructed
values (real line) and the real values (dashed line) on the line ¥ = -0.605
(see  Fig.(3-1)(b)) rorresponding to Fig.(3-14)(a) and Fig. (3-15)(a),
respectively. Table (3-3) gives the comparisons of the "distances"” of the
images reconstructed by the interpolation and interpolation-free algorithm, In
addition, the VAX-11/720 computer CPU processing time for the image
reconstructions of Fig,(3-114)(a) and Fig,(3-15)(a) are 2.58 and 19,3 minutes
regpectively, 1i.e., the time for the reconstruction of Fig.(3-14)(a) is only
about 13% of that of Fig.(3-15)(a). From the computer simulations, it is seen
that for the SADCT, the interpolation algorithm is not only faster than the
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interpolation-free aldorilthm, but superior in the guality of the image

onstructions

(b)

Fig.(3-14) il uotad by the intsrpolation algoritha of the SADCT From the
n oted values [real line) and fhe real values (dashed
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Figure Specifications d; rs| 1] de! rz2 ] e: |max min

{3-14) Interpolation L3410 ,16( .46 .34 .16 .46] .92|-.50x10-1

(3-15) Interpolation-free|1.0(1.0].84].51].42].60|.77 -.41

With the coordinate system shoun in Fig.(3-11), the center of the object
iz at (0,d4/2). For the object function whose center is not at the origin of

the coordinates contains a fast oscillating phase factor in its Fourier
domair, shich will ecause inesccuracy in the Fourier-domain interpolation,

higher quality images will be reconstructed if the center of the object is
wifted back to the origin of the ecoordinates before the Fourier-domain




interpeclation. Fig.(3-16)(a) is the same as Fig.(3-14)(a) except that the
center aof the object is shifted back to the origin of the eoordinates after
the Fourier-domain interpolation., It is seen clearly thal striking artifacts
are shown in this figure. Fig.(3-16)(b) is corresponding to Fig.(3-16)(a) amd
is the comparison of the reconstructed values (real line) and the real values
(dashed line) on the line 3 = ~0.605 (zee Fig.{3-1)(h)). Table (3-4) is the
pomparizon of the "distances" of Fig.(3-16)(a) and Fig.(3-14)(a). All the
results above show that the quality of Fig,.(3-16)(a) is lower than that of
Fig, (3-14)(n).

(a) (h)
Rig.[3-16) [s) 178x128 pixel mage recinstructed vith the ssse nanditions me Whsee for Fig.(1-14){a), ovespt that the venter of
the nbjeal iz shifte! bhaek to the origin of the scardinales after e Pesrier-doaain interpolation (B The ooeparisor
[ the reconstriunted values (real line) and the rea] viloeg (dashed line) on the line y = -0.60F [eee Pig.(3-1){b])

Tabla{3-4) The cowparisone

shiftul bask Lo the

the imagie reconstructad with the restar of the ohjent

dipates before wid aftsr the Payrisrdemain intargolation

Figure Specifications di |l rm] e | de] r2l ea |mae min

(3~14) Shift before int. |.34[.16].46]|.34].16].46].92]~-.50x10-1

(3-16) Shift after int. .361.201.511.36(,20(.51].98(-.96x10-1

Fig.(3=17) shows the distribution of the rectangular grid points of the
curvilinear coordinates on the rectangular coordinates in the Fourier-domain
coverage area A (such distribution in the area B can be obtained by rotating
Fig.(3-17) 902). It is seen clearly from this figure that the known points aof
the Fourier Lransform of the object finction are distributed densely near the
u-axis, the cenler symmetric avis of the area A, while they are distributed
sparsely near the boundaries (here, only the interior area of the circle
centered at the origin with a radius of ,FZko is considered). Therefore, the
interpolation for the Fourier transform of the object function on  the
rectangular grid pointe of the rectangular coordinatee near the boundaries of
the area A using Egq.{(2-T4) and Eq.(3-76) will result in big error. However;
those points which are near the boundaries of the area A are near the center
aymmetric axis (v-axis) of the area B, Henre, better results will be obtained
if Eq.(3-74) and Tq.(3-768) are replaced by Eq.(3-79) and Eq.(3-81) for the
interpolation of the pointz near the boundaries of the area A, and Eq.(3-79)
and Eq.(3-81) are replasced by Eq.(3-74) and Fqg. (3-76) for the interpolation of
the points near the boundaries of the area B, ITn this paper, by the
experiments, those points which satisfy the conditions [t |33k /32 oF



|kx | 331ks /22 are taken as the boundary points of the areas A and B. The above
statements can  be verified by the following computer sinulations. Fig.(3-
18)(a) is the same as Fig.(3-14)(a), but with no gspecial consideration of the
uneven nature of the distributions of the points near the boundaries of the
Fourier-domain coverage areas A and B, and thus its quality is poor. Fig,(3-
1BY (1) is ecorresponding to Fig.{(3-18)(a) and is the comparison of the
reconstructed values {real line) and the real values (dashed line) on the line
y = =0.6808 (see Fig.(3-1)(h)). Table (3-5) shows the romparison of the
"dHatanee" of Fig.(3-18){a) and Fig.(3-14)(a). 111 the results above

itllustrate that the guality of Fig.(3-18)(a) is lowered,

Pig.(3-17) The distribut! ' tangilar grid points of the survilinese coordinaien on the restsngilar coordingts i

(h)

Fig.[3-18) tad i ¢ conditions ne those for Pig.(3-M)(x), Pt with o special
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g (3-1114)
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TV, A NEW QUANTITATIVE REFLECTTON TMAGING METHOD

1. Theoretical Preliminaries

Fiz.{4-1) iz the datum acquisition geometry of the QRY method. Where the
%~y coordinates are fixed in the space; F(r) represents the object function
(Assume that the object is two-dimensional, and is immersed in the echoless
water tanker and is placed within the focal zone of the ultrasonic field of
the transducer); 1. represents the effective half-width of the focused
ultrasonic beam; %' is the distance between the center of the beam and the y!
axis; lp is the distance [rom the surface of the transducer to x axis. The
transducer wsed in Lhis paper is a transducer array consisted of many
elementary  transducers, which is used for both the transmitting and the
receiving of the ultrasonie field. This transducer array is  fooused
electrically and can be linearly scanned in a cross-section of the object
slong x axis. The foeal zope of the ultrasonic field is the area formed by
linearly scanning the segment of the ultrasonie beam centered at the foecal
point and stretched along the ultrasonic beam. BResides, the ultrasonic beam
within the Ffocal zone must be so narrow and even that it can be looked as
plane wave approximately in the effective width 2L of each ultrasonic beam.

Aexp(jkoser ) Ix=x" gL
h(oike) = | (4-1)
0 7o lx=x' I>L

where A is a complex constant, which represents the initial amplitude and the
phase of the incident wave; sy represents the unit vector in the direction of
the plane wave insonification; r = (x,y) is the position vector in the space.

Datun apquisition geveetep of the GRT metbod

If the transducer is placed so far from the object that the argument of
the Hankel fumclion in Eq.(2-45) is much greater than unity, i.e., ke ir-rai>1,
the expression of the two-dimensional free-space Green's fimoction in EBg. (2-44)
can be simplified to

J 2 ki
glrirg) = — expl b lx=rp |- —) 1] (4-2)
4 | wlo |r-xe | 1



Substituting both Eq.(4-1) and Eq.(4-2) into Eq.(2-47), one obtains

Uelriko) = JeF(zo )Aexpl jkoso: ro)

to—) ——————expl[ j(ko [r-1p |- —) ldro (4-3)
1 | mew lr-ro | 4

vhere s represents the focal zone of the transducer nrray; ke in Us(rike)
emphasizes the frequency-dependent nature of the geattered field, If the
center of the group of the elementary transducers is at the point r = (x*',-
lo ), Eq.(4-3) becomes

+00 +00
Ue(x?,=deska) = F S Flxo,vye )Aexp( jkeyo)
-00 -00

il 2

expl (ko | (%" =xa 2 +(y-yo )2-70/4) Idnoclyo  (4-4)

4 | ko) (" -%a0 )2 +(y-yo )2

Considering the expression of the incident field, Eq.({4~1), REq.(4-4) can be
written as

+00 x"+L
Uslx'=losks) =  Aexplikaye ) (370 1S F(xo ,¥e)
-0 x'-1.

2

explJj(ke | (%' -xo )2 +(~Lo=yo )2 -1/4) 1dxa }dya (4-5)
fiko,] (37 =0 Y2+ (=1g—¥0 )2

Suppose the ultrascnic beam is finely focused, the effective width 2L of the
beam in the foeal zone will be very small, and the variation of F(x,y) within
the width 2L which is centered on the line x = x’ will be negligible, and the
following condition will be held

|=lg-50 [ PPmax|x"-% | = L (4-6)
%' =Lxo {x"+L

In this case, the integrand of the integration with respective to xy in Eq.(4-
5) can be approximately locked as independent of the integral variable x and
can be taken out of the integral aign. Then, Fq.(4-5) can be further
simplified

+0O0
U (x",=lojlo) = Five ) A'exp( jkayo)
v 6l
J 2 n
—_ expl j(ke 1-1lo—yo |- —) 1d¥ye (1-7)
4 | mlep |-Lo-yo | 4

where A' = 2LA  is a new constant} F(y) is the object function on the line
¥ = x'" and is given hy

kg [n?(x',y)-11; (x',y)eobject

F(y) = | (4-8)
0 ; otherwise
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where n(x’,y) = Co/C(x',y) is the distribution of the refractive index of the
object on the line x = x', For the convenience of the discussion, two new
functions which are related to the distribution of the refractive index are
introduced

1"

Fly)/k8 (4-9)
m (5 /] o +y (4-10)

where ny(y) is another form of the object function and iz independent of the
angular frequency w; ne (¥) is named as eguivalent object function,

n ()

1]

e ()

From Fig.(4-1), it is seen that le¢+ye is always greater than zero when
the integral wvariable ¥ in Bq.(4-7) varies within the focal zone of the
ultrasonic field. In this case, from Eq.(4-7), one will note that

+i0
Uy (x';=1p ko) = S W8y (vo YA 'exp( jlta yo )
=00
| 2
*m— expl ke yo Yexplj(ke lo-(nt/4) ) Jdye

4 | nko (1lot+yo)

JA" KB expl i (ko 1o -n/4) ]
- e (~2ko ) (4-11)

2,]21:Im

where o (k) is the Fourier transform of ne (¥)
+60

fe (k) = £ _ne (y)exp(-jky)dy (4-12)

Tf the mechanical-electrical conversion characteristics of the transducer
is included, Eq.(4-11) will be modified to

iATkBexpli(ke la-n/4)]
Ps (x',=1o;ke) = Plko) o [ =2ke ) (4-13)

2] 2nke

where T(k) is the Fourier transform of the mechanical-electrical conversion
characteristic fimction of the transducer; Pe(x',-lojke) is the Fourier
transform of the electrical signal produced by the rf echoes. The function
P(k) can be determined in the following way: a point scatlerer is put at the
focal point (x’,0) of the incident ultrasonic bhezm (in the case of A point
scatterer, the object function ni(y) behaves as the §-function), then the
Fourier transform of the equivalent ebject function ne (¥) can be expressed as

Fe (k) = Mo (~2ke) = 12010 (4-14)

Finally, from Eq.(4-13), the mechanical-electrical conversion characteristies
of the Lransducer can be obtained

2,] 2o expl =3 (ke 1o +11/4) ]
P'(ke) = Pss (%" ,-1o ko) (4-15)
ko Jko

where Pep(x',-loils) ig the Fourier transform of the electrical signal
produced by the point scatterer. P'(ko) is obtained Ffrom P(ks) by multiplying
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the constant A",

With Tq.(4-13), the relationship between the Fourier transform of the
seattersd rf echo signal and the Fourier transform of the equivalent object
fuinotion on the line % = %' will be obtained

. 2[2mexpl-j (ko Lo+m/4) ] Pu(x" =10 iko )
ne (~2ko ) = [ ] (4-186)
]iom P! (ko )

where P'(k) jg determined by Fg.(4-15).

2. Spatial-Frequency Extrapolation and Tmage Reconstruction

As the incident wave used is a high-frequency bandpass signal with =a
certain bandwidth, fraom Eq.(4-16) only the high—-frequency component of the
equivalent object function ne(y) can be obtained. To reconstruct  the
equivalent object function using the known a priocri knowledges, the Gerchberg-
Papoulis (GP) frequency extrapolation techniquef®?!l js used in this paper to
recover the low-frequency component of the equivalent object fimction from the
high-frequency component.

By the ordinary B-zean image, the outlines of the internal structures of
the objeclt can be determined, Lherefore, the rf echo signals returned from
these outlines can be obtained and the phases of these rf echo signals can be
identified. Fig.(4-2) (a) and Fig.(4-2)(b) are the waveforms of the rf echo
signnls returned frem  the waler-agar and the agar—water interface
respectively. Tt is noticed that their phases are different.

(a) (b)

Rig (4-2) (4] of oho signale ssturnel [roa the wabter—~agac interface (b] from the agar—sater interface

In order to utilize the phase information contained in the rf echo
signals in the GP frequency extrapolation, it is required to derive the
relationship between the Fourier transform of the derivative of the equivalent
object function and the measured »f echo signals (the derivative of the
equivalent object function can be oblained by simply multiplying the factor jk
to ils spatial frequency domain, here, k = -2lo ). Notating nd{y) and nd (k) as
the derivative of the equivalent object function and its Fourier transform,
From Eq. (4-16), one obtains

B 4 2nexp[-j(ke 1o +30/4)]  Ps(x’,~lo ko)
ng (=2ke )} = [ ] (4-17)
T P (ko)

The GP frequency extrapolation consists of seven steps (a) to (g) below.
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It is an

(a)

(b)

- ()

(d)

(e)

————()

{(g)

iteration procedure and is described briefly in the following

Calculate TtV (k), the high-frequenoy component of ndl(y), using
Eq.(4-17) (W) (k) is used to replace the high-frequency component
of each order partial reconstruction of the derivative of the
equivalent object function in following iteration procedure).

Find nd(1) (y), the first-order reconstruction of the derivative of
the equivalent object function, by taking the TFFT of T201) (k).

Determine the =igns of nd1) (5) on the outlines af the internal
structures of the object in accordance with the phases of the rf echo
signals returned from these outlines.,

Find nt2)(k), the Fourier transform of the spatially modified
ndf1) {y), by using the FFT, I is seen that the speotrum of nd(1) (y)
is broadened and the low-frequency component comes out.,

Substituting N1 (k) into the high-frequency portion of T2 (k)
and then taking the TFFT, we obtain nd(2)(y), the sccond-order
partial reconstruction of the derivative of the equivalent object
function.

Calculate the average of [nd02) (y)=rdt 1Y (y)] and see if it is smaller
than a presel small positive value. If the condition is true, go to
slep (g), otherwise, go back to step (o).

Obtain the equivalent object function ne (¥) by integrating nd(K® (y),
the Nth-order partial reconstruction of the derivative of the
equivalent object fimetion (the integration constant is determined by
uging the condition that ne(y) = 0 if the point (x',¥) is not in the
abject). By scanning the acoustical beam in a cross-gection of the
nbject, the equivalent object function ne (¥) on different line % = x’
can be determined, and thus, tomographic image of the object can be
reconstructed,

3. Description of Experimental System

Experiment Transmitting/Re- B-scanner /oscd-
cecuirng syStemar| | (ascope measure-

setup [T fthe Japanese ment system
530-%56 B-scanner | interface
[HP-19808 05¢(fascope Iarf-rc compater and
mmsu@ment.ﬁgstm | age 3«@,,@ ana(
rm Siomge option

Tock disgras of the eyperinent systea

Fig.(4-3) is the block diagram of the experimental system. Tt consists of
five parts: 1) experimental setup; 2) transmitting/receiving system of the
Japanese ALOKA SSD-256 B-scannerf1051; 3} B-scanner/oscilloscope measurement

system

imterface; 4) HP-1980B oscilloscope measurement systemt 199 and HP-
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18860A digital waveform storags option!1101; and §5) IBM-PC computer and image
store and display systenm. A brief description of each part of the experimental
system will be given in the following.

Fig.(4-4) shows a draft of the water-tanker, the probe, the object to be
imaged and the aupporting framework of the probe and the object. The volume of
the water tanker is 91 cm (long) x 68 em (wide) x 70 om (high), and the
internal wall of the water-tanker is covered by ultrasound absorbing material.
The object to be imaged is even in its long =axial direction, i.e., the
distribution of the acoustical parameters on each of its transversal coroas-
section i8 the same and the ohject can be looked as  two-dimensiopal, The
linear array probe is used to Lransmit the ultrasonic pulses and receive the
echoes seattered from the object. Both the probe and the cbject are fixed on
the szupporting framevork, fomming probe-object system. The distance between
the probe and the obhject i=s kept unchanged during the experiment, and the
probe-chject system iz immersed in the water and is located in the center of
the water-tanker, This system can be moved up and down to minimize the affects
of the residual reflection signals coming from the wall and the bottom of the
waler—tanker in the measuring time window, The front view and the side vieu nf
the probe-object system are showpn in Fig.(4-4) (a) and Fig.(4-4)(h)
respactively.,

-

Supportd
fmrtmmﬁ% ” Cable

(n) (b)
Rig, (4-4) {2 The front view and (b) the side view of the probeshject svstes

Linean arroy

Bygiting group e,

Transmitting frced- | |Cunrant addart
ving cixaudts | 4. cuvent /
wobtageconvortst  |£cho

— W | el Pt
S [| || ool |Cme [
j Scanning & focws control) signal
!

LB-scan system controd " output
strip /| | zone l \*Probe B-3Scanner

Rig.(4-5) Blaak dingram of the tranemitting/receiving systen of the Inpance AN

b LU
|
|
|
l_,’

Fig.(4-5) is the trenemitting/receiving system of the Japanese ALOKA SSD-
256 B-scanner. The probe used in our experiments is the ALOKA UST-5024-3.5
linear arpay probe, it has 80 elements and its effective length is about 96
i, To abtain the focused ultrasonic beam with a certain focal length, these
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elepents are not emitited individually, but emitted in groups and with
different delay Lime for each element. After the emission, the grouwp of
elements convert Lo recsivers and are fooused olectrically with the same foecal
length as that when they are used as the transmitters. The focused ultrasonic
beam is scanned in the dirvection shown in Fig.(4-5) under the control of the
electrior] circuits. For every transmitting/receiving process, the rf echo
aignals are all filtered by a band-pass {ilter and then enter the full-wave
dotector, and Lhe detected agignals are fad inte the DSC  (digital sean
convertor) for the Uransformation of the scanning format and for the image
display. TIn the QRT method, the rf eche signauls are connected out with high-
frequency cable before detection, and are fed immediately to the datum
anquisition system. Besides, the digital signals which controlled the
transmission/reception  of the ultrasonic pulses and the linear scan of the
ultrasonic beam are connected out for the synchronization of the datim
acquisition system and the B-scanner,

In our experimental system, the digital wavel rm storage oscilloscope is
used for the datum acquisition of the rf echo signals. The HP-1980B
oscilloscope measurement systen when fitted with the HP-19860A digital
wavelorm storage option will form the high-frequency digital waveform storage
oscilloscope aix! allows the highest frequency of its input signal to be about
100 MHz. 'The digital waveform storage option can digitize the smveform of the
analog =ignal displayed on the oscilloscope measurement system in 10-bit
resolution and store them in its two digital memuries. Each of the memories
can hold as many as 501 samples and the samples can be transferred to computer
by the standard TERE-488 Interface,

As HP-1980B is an osecilloscope, to display the waveform stably, it is
necessary that the input slgnals are periodic., For sampling a periodie
signals, low-sampling rate A/D convertor can be used to achieve high-sampling
rate datum acquisition, which will lower the cost of the instrument greatly.
Because of the use of the low-sampling rate A/D convertor, the datum
acquisition time will be increased accordingly. As for the HP-1980B/TP-19860A
digital wavelorm storage oscilloscope, only one sample can be acquired in
every two periods of its inpul signals. Thereby, for a signal with a long
period, the time for the datum acquisifion will be very long. Tt is just the
ease in the datum acquisition of the rf scho signals of the B-scanner (the
repealing rate of the rf echo signals of the B-scanner is aboul 37 ms, and the
time for acquiring 501 samples will be about 37 =). therefore, to fulfil the
datum aoquisition in human body, it is necessary to develop a high-speed A/D
syvs=tem and a big datum buffer memory,

A the rf s<ignals fed into the oscilloscope measurement system are
filternd hy the B-scanner, its highest frequency is confined to 5 Miz (the
pass~band of the filter is extended from dozens of FHz tn § MHz). If the
bandwidth control knob of the oscilloscope measurement system is set to the
band-1imil position in the datum acquisition, the electrical noises which
frequency is higher than 20 MHz will be excluded and hence the quality of the
datum acquisition can be improved.

The interface cireuit which connects the B-seanner and the oscilloscope
measuremsnt system is shown in Fig,(4-6), For the period of the rf eche
signals in wvery long, it is difficult to display each part of the signals,
especially those parts that have big time delay from the scan triggering
signal. From the brief description of the digital waveform storage
oscilloscope measurement system above, mne can see that {f the waveform
displayed ia unstzble, the acquired data will be distorted severely (in farct,
at 30MHz sampling rate, a delay with several hundreds of Us will cause serious
digtortion in the datum acquisition). Tn order to sliminate the random shift

< 4-1.



of the displayed waveform along Lhe time axis, an interface circuit which
connects  the P-scanner and the oscilloscope measurement system is developed
and iz mounted in the B-scanner. Tn Fig.(4-6), the US TFRAME END signal
indicates the epd of each scanning, which means that all the echo information
coming from the cross-section of the object has been obtained, The period of
this signal i= that of the rf echo signals of the P-scanmer, Tn every period,
the probe is transmitbing and receiving 128 times, producing 128 ultrasonie
beams , The s BLE signal indicates the beginning of esch
transmitting/receiving process, its period is about 270 is which is the time
that allows the reception of the echo signals coming from as deep as 18 cm of
the binlogical soft tissues. The interface circuit consists of two parts: the
first part generates a Lime window with a fixed width (it is about 18 s which
is two times of the pulse width of the US BIK =zignal); the second part is used
te econtrol the delay of the time window from the US FRAME IND =ignal (the
delay Lime is adjusted manually by a precision multi<cirele voltmeter). When
working, the time window is moved te the desired US BIK signal and the
windowed US BLK signal is used to teriggsr the oscilloscope measurement system,
which w«ill fulfil the slable display and the stable datum acquisition of the
rf echo signals returned from the cbject. Successively moving the time window,
tha 1rf echo signale in each transmitting/receiving procedure will be acquired
and stored.

The data arguired by the digital waveform storage oscilloscope can  then
ke transferred to the compuler via the standard IEEE-488 interface under the
control of the hardware and the software of the IBM-PC computer and will be
saved in floppy disk after every 501 datum transfer is finished. (In order to
ke the TBM-FC computer have the hardware Nunction of the standard TEEE-488
interface, a commercial multi-functional CPTB-PC board is inserted into a bus
slot of the computer. Using software provided with the board, the high-level
compuler langusge can be used directly for the control of the functions of the
digital waveform storage oscilloscope and its datum transfer to the computer).
By the use of the data saved in the floppy disk and the software of the GQRI
method developed, images can b= reconstructed. Finally, the reconstructed
images are transferred to the ARLINYA TF-4000 temporal filter and image store
via the standard RS-232C interface with the control of the ARLUNYA computer
tran=fer module (CTM), and are displayed on the high resolution JVC menitor.

Us mmzf END

gl r
V| Gitedelay
. Us BLK —_—

GATE}]
&ATED%SB{.K L‘:}ﬁ—]

Us FRANE END adjustmont
"'__ & BLK woltmefer

Big.[4-6) The intaclazz botusen \ho B-soammer and the ogcillombope sesmuriment s7sles

4. Experimental Results

(1) A computer simulation

Aggumes that Lhe object functicn is s peclangular (see Flg. (4-7T)), i.e.
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e (v} = (4-182)
0; otherwviss

where Q is the spatial stepping length of m(y); A is a constant, Here,
A = 0.0760 mm, A = 3.22, The number of the discretion points of ny (y) 1024,
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Rig (-1 The oljent functing nily)
From Bq.(4-10), the equivalent cbject function will be given by

As[To+y; -1520¢r¢1184
mn(y) = | (4-19)
0 ; otherwise

where lo = 115 mm. The figure of ne(y) ig shown in Fig.(4-8), where its
maximum value is maxine (y))] = 1.00. Next, we will assume that the high-
frequency component of ne (y) has been obtained from the rf echo signals using
Eq.{4-16). From this high-frequency component, the equivalent object fimction
ne(y) and hence the object funmction m(y) will be recovered by the GP
frequency extrapolation technique.
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il | |
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Pigi(4-8) The quivalenl object Risetisn ny{3)

Taking the FFT of ne(y), one will find the spectrum T (k) (see Fig.(4-
9)). Applying the Blackman window to W (k), Ffrom Fig.(4-9) we obtain Fig. (4-
10). Fig.(4-11) is obtained by taking the TFFT of the function in Fig.(4-10),
and it represents the windowed equivalent object function and is an
approximation of the equivalent object function determined by Eq.(4-19). Tt is
seen that Fig,(4-11) is almost the same as Fig,(4-8), and the maximum value of
the function in Fig,(4-11) is 0.999 which is alsc almost the same as that in
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Differentiate the equivalent object function in Fig.(4-11), one obtains
nd (y), the derivative of the equivalent object function (to differentiante the
equivalent object function is equal to multiply the factor jk to its Fourier
domain) (see Fig.(4-12)). Fig.(4-13) shows 8 (k), the spectrum of nd(y).

Excluding the low-frequency portion in Fig.(4-13), we have T (k), the high-
frequency portion of fl(k), which will be taken as the "correctly known" wvalue
in the following iterations of the GP frequency extrapolation (here, Te) (k)
is assumed to be obtained from the Fourier transform of the measured rf echo
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signale using Eq, (4-17)).

1.2
2R 1
t‘. r
0.4
B2

2.3 .
a2} i

-4
e 11

a8 ! I

A8l i ma W8 a0 R YR 962 D 10

Fg (1-12) oifs), the derivative of the equiveleal objzet funation fa(7) in Plg.(4-1)

82 ‘ 119

281 @ 33 360 9 M6 430 720 fde M0 kel

Fig [-13) 20E), the spectzun of all3)

L8

T

a8
a6}
'!‘

[ B4

tew 7t W@ 1E%

T EE R
Fig. (4-14) 4011 (%), the high-froquenty portisn of T (k)

Taking the IFFT of Tt} (k), ndt1 (y), the first-order partial reconstruction
of the derivative of the equivalent ohject function will be obtained (see

Tt is seen that the outline position of ns(y) and the plus and the minus
signs of ndly) on these outlines can be provided by Fig.(4-12). Modifying
ndt (y) in the spatial domain using the outline and the phase information,
then taking the FFT, ng02) (k), the spectrum of the spatially modified
et (y), can be found (see Fig.(4-16)). Tt can be observed from Fig.(4-16)
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that the spectrum of n2t!)(y) has heen broadened and the low-frequency
component is emerged., Tnserting the spectrum fi2(%) (k) into the high-frequency
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Fig (4-17) High-Trequency portion nodified 514 (k)

portion of Ni(2) (k), one will get Fig.(4-17). Comparing Fig.(4-17) to Fig.(4-
13), it is noticed that there is remarkable difference between them. Taking
the TFFT of the frequency—domain modlified spectrum, the second-order partial
reconstruction of the derivative of the equivalent object function nd¢2)(y)
can be obtained. Repealing the iteration procedure above, nd(%°!(y), the
thirtieth-order partial reconstruction of the derivative of the equivalent
ohject funolion, can be reconstructed. After the spatial-domain modifying, its
spectrum is shown in Fig.(4-18). Comparing Fig.(4-18) to Fig.(4-13), it i=
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seen that there is little difference between them., Substituting 'ﬁJ' (k) into
the high-frequency portion of Fig.(4-18), we obtain Fig.(4-19). Again, it is
seen that there iz little difference between these figures,

Pig(4-18] ®™he spoctrm of the Whirtieth-ondur partis! reconstrochion pf4ty) of the derivative of the emivalanl ohject
furef ion

R

Fig.(4-18) e spectoun oF the [requancy-deaiy audified pytn Iy}

Taking the TFFT of the spectrm of the frequency-domain modified
nef30) (y) in Fig.(4-19) and then integrating the result with respect to y, one
will obtain n.t?1) {y) (see Fig.(4-20)), the thirty-first-order partial
reconstruction of the equivalent object funetion. The maximam wvalue of
net ¥V (y) is about 0.905. From nef3Y3(y), one can obtain mt¥){y), the
approximation of the object function m (y) (see Fig.(4-21)). Fig.(4-21) and
Fig,(1-20) nre corresponding to Fig.(4-T) and Fig.(4-8), and are the results
of the reconstructions of ny(y) and ne(¥), respectively,
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Fig.(4-21) naf 14 {y), the spprovimsation of the ohject function m{y)

From the computer simulation above, the equivalent object function ne(y),
and hence the object function ni (y) can be reconstructed by the GP frequency
extrapolation technique provided that the high-frequency component of e (y)
are corractly known and proper a priori knowledges are applied.

(2) Experimental results

In our experiments, agar is taken as the material for preparing the
testing objects (phantoms). First, the agar powder is put into wvarmed water
and is stirred by a grass rod to make it soaked, The stirring will be
performed so gentle that little bubble ig generated. After the agar-aqueous
solution is compounded to a given volume percentage concentration, it is put
into a high-pressure vessel for dissolving. Then, the dissolved agar-aqueous
solution is poured into a mould prepared beforshand, After the solution is
cooled down, it is fetched out and the phantom is formed. The mould used is a
square charmel and in the center of this chammel, several grass rods which
diameters are 2 mm and 3 mm are placed in a desired arrandement.., The gide
length of the square chammel is 20 mm and both the length of the square
channel and the grass rods arve 200 am. As (he phantoms are prepared evenly in
its Jong axial direction, they can be looked as two-dinensional.

Fig.(4-22) are three phantoms prepared. The phantom in Fig.(4-22) (a)
contains six small holes (one of them is of the diameter of 2 mm, others are
of 3 mwm) and is prepared from 4% agar-aqueous solution. The phantome in
Fig, (1-22)({b) and (r) have no holes in them and are prepared from 4% and 8%
agar-aqueous  solutions respecltively. Fig.(4-23) (a), {bh) and () are
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V. SUMMARY

This paper gives a detailed theoretical analysis of the
reconstruction algorithms of the diffraction teomography in the
different datum acguisition geometries. As a result, the imaging
quality and the image reconstruction speed of tLhese algorithms
are improved greatly. Although the great advances has been
achieved in the study of the diffraction tomoegraphy, further
resesrches should be carried oul if the diffraction tomography is
to be sventunlly used in elinic.

The QRT method proposed in this paper makes full usa of the
availuble transmitting/receiving system of the B-scanner and can
provide the quantitative information of the distribution of the
acouslical parameters of the biclogical soft tissues that the
ordinary B-scanner can not provide. Therefore, it is hopeful that
the QRI method is comhined with the ordinary B-scanner Lo
strengthen the ability of tissue characterizations and diagnosing
diseases., In addition to the detailed theoretical derivation of
the QRI method and the computar simulation, a full set of
experimental system iJs designed and developed, With this
experimental syslem, practical date from the testing objects are
acquired and good images are reconslructed.,

Although the QRT method reveals a good prospect of clinical
applications, it is still far from being perfect. Several
problems that are associated with the practical medical imaging,
such as, the absorplion of the ultrasonic wave in binlogical soft
Lissues, the scaltering of the ultrasonic field by the unevenness
of the distribution of the densily of the biological saoft
tissues, the effect of the noises to the phase determination of
the rf echo signals, should be considered. Besides, an AC LOG
amplifier or time/gain convertor with small nonlinear distortion
and big dynamic range should be developed to increase the
resclution of Lthe datum acquisition of the signals returned from
Lhe depth of the biological soft tissues; high-speed datum
acquisilion system and large-capacity buffer memory are required
for the real-time datum acquisition of Lhe signals returned from
human body. Tn addition, because the agar phantoms used in the
experiment are different from the biological soft tissues in some
features, further theoretical and experimental studies should be
carried out in the biological soft tissues.
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