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Nondiffracting X Waves—Exact Solutions to
Free-Space Scalar Wave Equation and
Their Finite Aperture Realizations

Jian-yu Lu, Member, IEEE, and James F. Greenleaf, Fellow, IEEE

Absiract—Novel families of generalized nondiffracting waves
have been discovered. They are exact nondiffracting solutions of
the isotropic’homogenous scalar wave equation and are a gener-
alization of some of the previously known nondiffracting waves
such as the plane wave, Durnin’s beams, and the nondiffracting
portion of the Axicon beam equation in addition to an infinity
of new heams. One subset of the new nondiffracting waves have
X-like shapes that are termed “X waves.” These nondiffracting
X waves can be almost exactly realized over a finite depth of
field with finite apertures and by either broad band or band-
limited radiators. With a 25 mm diameter planar radiator, a
zeroth-order broadband X wave will have about 2.5 mm lateral
and 0.17 mm axial —6-dB beam widths with a —6-dB depth
of field of about 171 mm. The phase of the X waves changes
smoothly with time across the aperture of the radiator, therefore,
X waves can be realized with physical devices. A zeroth-order
band-limited X wave was produced and measured in water by
our 10 element, S0 mm diameter, 2.5 MHz PZT ceramic/polymer
composite J; Bessel nondiffracting annular array transducer
with —6-dB lateral and axial beam widths of about 4.7 mm and
0.65 mm, respectively, over a —6-dB depth of field of about 358
mm. Possible applications of X waves in acoustic imaging and
electromagnetic energy transmission are discussed.

1. INTRODUCTION

N 1983, I. N. Brittingham [1] discovered the first localized

wave solution of the free-space scalar wave equation and
called it a self focus wave mode, In 1985, another localized
wave solution was discovered by R. W. Ziolkowski [2] who
developed a procedure to construct new solutions [3] through
the Laplace transform. These localized solutions were further
studied by several investigators [4]-[9]. An acoustic device
was constructed to realize Ziolkowski’s Modified Power Spec-
trum pulse that is one of the solutions of the wave equation
through the Laplace transform [10].

In 1987 J. Durnin discovered independently a new exact
nondiffracting solution of the free-space scalar wave equation
[11]. This solution was expressed in continuous wave form and
was realized by optical experiments [12]. Durnin’s beams were
further studied in optics in a number of papers [13]-[19]. Hsu
et al. [20] realized a J; Bessel beam with a narrow band PZT
ceramic ultrasonic transducer of nonuniform poling. We made
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the first Jy Bessel nondiffracting annular array transducer [21]
with PZT ceramic/polymer composite and applied it to medical
acoustic imaging and tissue characterization [22]-{25]. Camp-
bell et al. had a similar idea to use an annular array to realize
a Jy Bessel nondiffracting beam and compared the J, Bessel
beam to the Axicon [26].

In this paper, we report families of generalized nondiffract-
ing solutions of the free-space scalar wave equation, and
specifically, a subset of these nondiffracting solutions, which
we term X waves (so-called X waves because of the appear-
ance of the field distribution in a plane through the axis of
the beam). The X waves are a frequency weighted Laplace
transform of the nondiffracting portion of the Axicon beam
equations [27]-[33] (in addition to the nondiffracting portion,
the Axicon beam equation contains a factor that is proportional
1o /= that will go to infinity as z — oo [31]) and travel
in free-space (or isotropic/homogeneous media) to infinite
distance without spreading provided that they are produced
by an infinite aperture.

Even with finite apertures, X waves have a large depth of
field. (For example, with 25 mm diameter radiator, a zeroth-
order broadband X wave will keep 2.5 mm and 0.17 mm
—6-dB lateral and axial beam widths, respectively, and have a
171 mm depth of field that is about 68 times the —6-dB lateral
beam width and 7 times the radialing diameter.) We have
experimentally produced a zeroth-order band-limited X wave
[34]. We used our 10 element, 50 mm diameter, 2.5 MHz PZT
ceramic/polymer composite .Jy Bessel nondiffracting annular
array transducer [21], [22]. The X wave had —6-dB lateral and
axial beam widths of about 4.7 mm and ().65 mm, respectively,
over 2 —6-dB depth of field of about 358 mm.

In comparison with Ziolkowski's localized wave mode [2],
[3]. the peak pulse amplitude of the X wave is constant as
it propagates to infinity because of its nondiffracting nature,
Durnin’s beams are nondiffracting at a single frequency but
will diffract (or spread) in the temporal direction for multiple
frequencies [22]. X waves are multiple frequency waves but
they are nondiffracting in both transverse and axial direc-
tions.

Like the .J; Bessel nondiffracting beam [21]-{25], X waves
could be applied to acoustic imaging and tissue characteriza-
tion. In addition, the space and time localization properties of
X waves will allow particle-like energy transmission through
large distances, as is the case with Ziolkowski’s localized wave
mode [7].
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In Section II, we first introduce the families of generalized
nondiffracting waves and the nondiffracting X waves. Then,
we provide two specific X wave examples. The production
of X waves with realizable finite aperture radiators and finite
bandwidths are reported in Section III, Finally, in Sections IV
and V, we discuss further implications of these novel beams.

II. THEORY OF X WAVES AND TWO EXAMPLES

We will show below three families of generalized non-

diffracting solutions of the free space (or isotropic/homogeneous)

scalar wave equation.
The free space scalar wave equation in cylindrical coordi-
nates is given by

rar\ ar r2 d¢? - P2

where » = /2?4 y? represents radial coordinate, ¢ is
azimuthal angle, z is axial axis, which is perpendicular to the
plane defined by r and ¢, ¢ is time and ¢ represents acoustic
pressure or Hertz potential that is a function of », ¢, z, and 1.

The three functions below are families of exact solutions of
(1) (see the Appendix):

1

r_‘?ﬁ}p =0, (1)

Bo(s) = fT(k) El¥ [ A(B) f(5)d8 | d: @)
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and where
(k. €) = ey[1 + [ealk, ) bk, ) (6)

where 7'(k) is any complex function (well behaved) of 4 and
could include the temporal frequency transfer function of a
radiator system, A(#) is any complex function (well behaved)
of f and represents a weighting function of the integration with
respect to ), f(s) is any complex function (well behaved)
of s, D(() is any complex function (well behaved) of ¢
and represents a weighting function of the integration with
respect to ¢, which could be the Axicon angle ((11)), ao(k.0)
is any complex function of & and {, b(k.() is any complex
function of & and (. The term ¢ is constant in (1), £ and
¢ are variables that are independent of the spatial position,
7= (reos¢, rsing, z), and time, ¢, and ®5(z — ¢f) is any
complex function of z — et. @,(r,¢) is any solution of the
following transverse Laplace equation (an example of @) (r, ¢)
is given in the Appendix):

Lo [ 8 1 &*
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The exact solution of the free space scalar wave equation,®y,
represents a family of nondiffracting waves because if one
travels with the wave at the speed, ¢, i.e., 2 — ¢f =constant,
both the lateral and axial complex field patterns, &, (r, ¢) and
®5(z — ct). will be the same for all time, ¢, and distance, z.

If ¢;(k,¢) in (6) is real, “+” in (5) will represent backward
and forward propagating waves, respectively. (In the following
analysis, we consider only the forward propagating waves. All
results will be the same for the backward propagating waves.)
Furthermore, fbg(s) and $5(s) will also represent families
of nondiffracting waves if ¢y(k.() is independent of & and (,
respectively. These waves will travel to infinity at the speed of
1 without diffracting or spreading in either the lateral or axial
directions. This is different from Brittingham's focus wave
mode [1], and Ziolkowski’s localized wave [2] and modified
power spectrum pulse [3] that contain both z — ¢t and z — t,
or both z — ¢f and 2+ et terms in their variables, where ¢ and
¢’ are different constants.

We find @C(s) is the most interesting solution. In the
following, we will discuss <I>C(%) only. ‘PC( ) is a generalized
function that contains some of the nondiffracting solutions of
the free space scalar wave equation known previously, such
as, the plane wave, Durnin’s nondiffracting beams, and the
nondiffracting portion of the Axicon beam in addition to an
infinity of new beams.

If T(k) = 6(k — k"), where 6(k — &) is the Dirac—Delta
function and &’ =w/e > 0 is a constant, f(s) = e*, ag(k.()
= —iee.b(k.() = i3 = iw/c;, from (2) and (5), one obtains
Durnin’s nondiffracting beam [11]

T

1
:ﬁ / ‘1(9) ,— YT CO8 (d— H')rﬂ) i(Fz—wt) (8)

-

Bp(s) =

A= VEk?—a? (9)

where « is a constant and w is angular frequency. If A(f) =
i1 pinl , we obtain the nth-order nondiffracting Bessel beams:

e
q’.f,, (q) — -)T,,,((Y'r')(!i("iz*"‘ﬁ‘knq'j, (n =0,1,2, - ) (m

If n = 0, one obtains the J Bessel nondiffracting beam. From
(8). it is seen that ¢)(k". {) of the Durnin beams is equal to
w/f3 and is dependent upon A’. Therefore, if T'(k) in (2) is
a complex function containing multiple frequencies, <I>C(.ﬁ)
will represent a dispersive wave and will diffract in the axial
direction, z. If both n and « are zero, (10) represents the
plane wave [11].

If in (2), we let T(k) = 8(k — k'), f(5) = €%, A(f) = i"f,
een(k,Q)=—rksing, b(k,{)= ikcos(, where &' =w/c > 0 is a
free parameter, and ¢ represents the Axicon angle (we confine
0 < ¢ < w/2), we obtain the nth-order nondiffracting portion
of the Axicon beam [31]:

D4, (5) = J.(k'rsin()e’ (k' zeont—wtrnp) (n=0,1,2,..).

(11)
From (11), it is seen that ¢y (&',{) = e/cos( is independent of &/,
which means that the waves constructed from ®4,(s) by (2)
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will have a constant speed ¢; for all frequency components and
will be nondispersive. The X waves derived in the following
are such waves that are nondiffracting or nonspreading in both
lateral and axial directions.

We obtain the new X wave if in (2), we let T(k)
B(k)e~%% A(f) = i"e™?, ap(k,() = —iksin(, b(k,C)

= i"e
ikcosC, f(s) = e°, obtaining

(12)

This is an integration of the nth-order nondiffracting portion
((11)) of the Axicon beam equation multiplied by B(k)e %",
where B(k) is any complex function (well behaved) of &
and represents a transfer function of a practical radiator
system, & =w/e,aq > 0 is a constant, and ¢ is the Axi-
con angle [31]. From the previous discussion, it is seen
that ®x, is an exact nondiffracting solution of the free-
space scalar-wave equation (1). Equation (12) shows that
®y, is represented by a Laplace transform of the function,
B(k)J,(krsing), and an azimuthal phase term, ¢'"%. Because
the waves represented by @y, have an X-like shape in a plane
through the axial axis of the waves, we call them nth-order
X waves.

We finish this section with two new nondiffracting X
wave examples. The first represents an X wave with broad
bandwidth, while the second is a band-limited X wave.

Example 1: First, we describe an expression for an X wave
produced by infinite aperture and broad bandwidth.

If, in (12), B(k) = ag, we obtain from the Laplace transform
tables [35]

o

ag/.f,,(rrk)ff"“'dl.:z

0

aunl'l
VaZ + 62 (s + Vo + 32)“

(13)

giving an nth-order broadband X wave solution (exact solution
of (1), see the Appendix):

ag(rsin ()" e™™?

V(- + Vi) s

where the subscript BB means “broadband,” an

@xBB, = =0,1,2,..) (14

d

M = (rsin¢)” + 72 (15)

and where
7 = [ap — i(z cos ¢ — ct)]. (16)

For simplicity, we let n = 0, obtaining axially symmetric

zeroth-order nondiffracting X wave:
g

\/('r sin C)'2 + [ag — i(zcosC — ct)]gl

‘I'.YBB;, = (17)

The behavior of the analytic envelope of the real part of
(17), Re[®xpg,] is shown in the upper left panel of Fig. 1
or Fig. 2. The modulus of ®xpg, in (17) can be obtained as
shown in (18) (see bottom of page).

Now we discuss the lateral, axial, and X branch behaviors

of this X wave. It is seen from (18) that for fixed ¢ and g,

at the plane z = ct/cos(, we have

| ®xna, |= (19)

which represents the lateral pressure distribution of the X
wave through the pulse center and has an asymptotic behavior
proportional to 1/r when r is very large.

On the line » = 0, from (18), we obtain

Vi (2 (- aiet)

which is the pressure distribution of the X wave along the
axial axis, z, and has an asymptotic behavior proportional to
1/ |z — 5zt | when | z — =% | is very large.

The pressure distribution of the X wave along its two
branches (see Figs. 1 and 2) can be obtained when

(20)

| @xBB, |=
(}‘1
ey

ag ‘cos ¢ : ?
= - ———t) —1 21
sin ¢ ( g ) (z cos ) (21)
where
cos (
— |z - ol =Bl 22
ag I cos 2= =
and from (18) we obtain
| ®xBB, |= (23)
\/2 oS | C()Sg

which has an asymptotic behawor that is proportional to
1y — caact | when [
direction of slowest descent of the X wave amplitude {rom
its center.

From (19), (20), and (23), it is seen that the smaller ag
is, the fastcr the function | ®xpp, | diminishes as r or
t | increases. If sin ¢ is small, the diminution of
will be slow with respect to r and fast with respect
t | . This means that if the X waves are applied to

| =

| 2 cOs
| (IJ.YBBQT
to|z—

aeC
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ag
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“amparisan of X Waves Derived from Raylsigh—Sommerfaid
Fformulation of Diffroction to Exact Solution of Wave Eguation
n=3)

Fig. .

28 mm,

Panel (a) represents the exael zeroth-order nondilfracting X wave solution of the free-space scalar wave equalion. Panels (b),

(€), and (d) are the appropriate zeroth-order nondiffracting X waves calculated from the Rayleigh-Sommerfeld diffraction integral
with a 25-mm digmeter planar radiator a1 distances = =30 mm. Y0 mm, and 150 mm. respectvely. The dimension of each panel
is 125 mm x 6.25 mm. B(k) = ap, ¢= 4" and ug = L05 mm.

Comparison of X Woves Derived from Rayleigh—Sommaerfeld
Formulation of Diffroction to Exoct Seclution of Wove Equation
(B(k) ma,, 8 =4", ¢, =005 mm, D =50 mm, n=20)

E
£

12.5

Fig. 2.

imaging, smaller ay will give better resolutions in both lateral
and axial directions, while smaller sin { will reduce the lateral
resolution while increasing the axial resolution.

At the center of the zeroth-order X wave (r = 0. z = et/ cos
¢), ®xpp, = 1 for all distance, z, and time, ¢ (see (17)),
which is unlike Ziolkowski's localized wave [2] and modified
power spectrum pulses [3] that recover their pulse peak values
periodically or aperiodically with distance, z.

Example 2: Because B(k) in (12) is free, it may be chosen
to achieve realizable bandwidth as shown in the following

Same format as Fig. 1, except that a 50 mm diameter planar radiator is used.

example. If B(4) is a Blackman window function [36]:

Bk = {u[, [(1.42 — 0.5 cos % + 0.08 cos %] 0<k <2k
0, otherwise

(24)
We can approximate the bandwidth of a real transducer.
Although we cannot find an analytic expression for ®x
from using (24) in (12) by directly looking up a Laplace
transform table, we will describe in the Section III the resulting
nondiffracting beam calculated for some finite apertures.
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I1I. REALIZATION OF X WAVES WITH
FINTTE APERTURE RADIATORS

The extension and therefore the aperture requirement of X
waves in space is infinite (see (12)). But we show that nearly
exact X waves can be realized with finite aperture radiators
over large axial distance. To calculate X waves from the finite
aperture radiators, a spectrum of X waves is used. Equation
(12) can be rewritten as (25) (see bottom of page), which is
an inverse Fourier transform of the function (spectrum of X
waves)

Dy, (f-‘, ‘t) = zr, e'™* B (%)J,, ((Er sin C)

B[ 2 e ttortemntl g — 01,2, 0.
¢

(26)
where
w 1. w >0
H(E) - { 0, w<0 (&5
is the Heaviside step function [37].
At the plane z = (), (26) becomes
- w w
=~ i — | = T - = 2‘1
‘I>\“(1,¢r. “) B(p)E ( B ) (n=01.2....) (28)

where

By (i’ . %) :2%—‘],, (%r sin C)
- If(i_)(f“" &
e

(=0, 1, 2,
(29)

The spectrum in (28) is used to calculate X waves from
radiators with finite aperture. If we assume that the radiator is
circular and has a diameter of D, the Rayleigh-Sommerfeld
formulation of diffraction by a plane screen [38] can be written
as

o DJ2

éR..(ﬁ' ,'»\ /'d(fl /rrfr’(I)\ ?" d) A)
(2

zf\f.,l

TH1
2x P f-‘drn
-l-_/rl!(,b / ' dy CIJ\ (', ¢ k)
’ul
(n=0,1, 2, ..) (30)

and

®n (7.1) :FI[@R,, (r%)] L (m=0,1.2 .) (1)

where A is wavelength, 7y is the distance between the
observation point, 7, and a point on the source plane (r'. /).

and F~! represents the inverse Fourier transform. The first and
second terms in (30) represent the contribution from high and
low frequency components, respectively.

Because B(w/c) in (28) is independent of " and ¢’, (30)
can be rewritten in another form

Qg (7 k)= BE)G,.(F.k). (n=20, 12, ..) (32)
here
R Dj2 :
G (k) = — fu’/ e B0 K)o
T e ¢ nl? f 5
Y ( 7 el ( . q =
0 0
s g D/2 e
AL
+ /rirf; / rdi B, (r .. /) %
7(11
(=0 1 2 .} (33)
and
A . N e @
(I)'t"'(r'ﬂ = jiB({ )('"(L r:)}
— g1 “N & == ci
=7 B(D)] e (nT)] e
where * denotes convolution on time, , and 7 '[B(w/¢)] can

be taken as an impulse response of the radiator.

We now describe an example of an X wave produced by
a finite aperture. Let B(k) = ag, ¢ = 49, (sind? == 0.0698.
cosd? = 0.998), ag = 0.05 mm, n = 0, and ¢ = 1.5 mm/ps
(speed of sound in water). The analytic envelope of the real
part of ¢, , Re[Pg,]. calculated from (33) and (34) is given
in Fig. 1 and Fig. 2, when the diameler of the radiator, [, is
25 mm and 50 mm, respectively. The X waves are shown at

= 30mm, 90 mm, and 150 mm, respectively. These X waves
compared well lo the analytic envelope of the real part of
the exact nondiffracting X wave solution, Re[® y gp,]. where
&y pp, is given by (17) (see upper-left panel of Fig. 1 or 2).

Fig. 3 shows beam plots of the X waves in Figs. 1 and 2.
Figs. 3(al), 3(a2), and 3(a3) represent the lateral beam plots
of the X waves produced at the axial distances z =30 mm,
90 mm, and 150 mm, respectively, through the center of the
pulses. The full, dotted, and dashed lines represent the beam
plots of the X waves produced by a 25 mm diameter radiator,
50 mm diameter radiator, and the exact nondiffracting X wave
solution of the free-space scalar wave equation (real part of
(17)), respectively. Fig. 3(ad) represents the peak of the X
waves along the axial distance, z, from 6 mm to 400 mm. The
—6-dB depths of field of the X waves are about 171 mm and
348 mm when the radiator has diamelers of 25 mm and 30
mm, respectively. The —6-dB lateral beam width throughout
the depth of field is about 2.5 mm.

E)f'_%{a“ﬂ.: ms“i[(:“‘”dm. (n=0, 1, 2,..),
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[
tn

Reglization of Bond—Poss Mondiffrocting X Waves
with Finita Aperture (D = 25 mm)

Blackman Window
ctlen Paaked
ot 3.5 MHz with
— B4B Bondwidth
about 2.88 Mz

g = 4°
g, = 0.05 mm

Fig. 4. Rayleigh-Semmerfeld caleulation of the zeroth-order nondiffracting X waves produced by a 25 mm diameter, band-limiled
planar radiator at distances = =30 mum, % mm, and 150 mm. The radiator transfer function B(&) is a Blackman window function
peaked at 3.5 MHz with a —6-dB bandwidlh about 2.88 MHz. The dimension ol cach panel is 1253 mm x 6.25 mm. { = 4

and ag =0.05 mm.

Figs. 3(b1) to 3(b3) are axial beam plots of the X waves
with respect te ¢1t — z and correspond to Figs. 3(al) to 3(a3),
respectively. (¢; = ¢/cosC. For  =4?, ¢; = 1.002¢.) The edge
waves produced by the sharp truncation of the pressure at the
edge of the radiator are clearly seen. These edge waves can
be overcome by using proper aperture apodization techniques
[39] and will be discussed in the next section. The —6-dB
axial beam width obtained from Fig. 3(b) is about (.17 mm.

The depth of field and the lateral and axial beam widths
of the zeroth-order broadband X wave produced by a radiator
of diameter D can be determined analytically in the follow-
ing. For any given angular frequency, wy, (30) represents a
continuous field of an aperture shaded by a .J; Bessel function

S(wo)Jo{oor) (33)
where
27 L fwh wo\ =0 .
Swo)= B3 )H(7)e™ (o
and
o = % sin (. 37

The depth of field of this .J; Bessel beam is delermined by

[11]
Zmu:r: = 2 (ﬂ) - 1 (38)
2 age
Substituting (37) into (38), we obtain
Zonae = o cOLC (39)

which is independent of frequency wy! If {= 49 and D =
25mm, we obtain, from (39), zy,=178.8 mm, which is very
close to what we oblained from Fig. 3(a)(4) (171 mm).

The —6-dB lateral beam width of the X waves can be
calculated from (19), which is

2/ dan

P 40
' sin g (40)
and the —6-dB axial beam width is obtained from (20))
; 2/ 3a.
2lz— - f|= \/_”_“. (41)
Cos ¢ cos(

When ag = 0.05 mm and ¢ = 4°, the calculated —6-dB
lateral and axial beam widths are about 2.5 mm and (.17 mm,
respectively, which are the same as we measured from Fig. 3.

Figs. 4 and 5 are the analytic envelope of a zeroth-order
band-limited nondiffracting X wave produced by a radiator
of diameter of 25 mm and 50 mm, respectively, when B(k)
is chosen as a Blackman window function (see (24)). The
parameter kg in (24) for these figures is given by

27 f
ko = fo

(42)

where ¢ =1.5 mm/ps, fi =3.5 MHz, and the —6-dB band-
width of the Blackman window function is about 2,88 MHz.
The X waves in Figs. 4 and 5 are a band-limited version of
those in Figs. 1 and 2. They are the finite aperture realization of
the convolution of function F~*[B(w/c)]/ay with (14) when
n = (), that is

Dypr, = if_L[B(-(:’)] * (I).\‘BB,,- {n=0,1,2,...)
(43)
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Realization of Band—Poss Nondiffrocting X Waves
with Finite Aperturs (D = 50 mm)

8(k): Blackman Window
Funection Peaked
at 3.5 MHz wikh
- 848 Bandwidth
about 2.88 MKz

with n = 0, where B(w/e) (w = 0) can be any complex
function that makes the integral in (23) converge, “*” denotes
the convolution with respect to time, t, and the subscript BL
represents “band-limited.”

The three panels in Figs. 4 and 5 represent band-limited
X waves at distance z =30 mm, 90 mm, and 150 mm,
respectively. The parameters ¢ and ag are the same as those in
Figs. 1 and 2, which are 4° and 0.05 mm, respectively. From
Figs. 4 and 5, it is seen that the band-limited X waves have
lower field amplitude in the X branches than the wideband X
waves in Figs. 1 and 2.

Fig. 6 is the same as Fig. 3, except that it represents the
lateral and axial beam plots of the band-limited X waves in
Figs. 4 and 5. The —6-dB lateral and axial beam widths of
the band-limited X waves obtained from Fig. 6 are about 3.2
mm and 0.5 mm, respectively, at all three distances (z =30
mm, 90 mm, and 150 mm). Therefore, these band-limited X
waves are also nondiffracting waves. Their —6-dB maximum
nondiffracting distances derived from Fig. 6 are 173 mm and
351 mm, when the diameters of the radiators are 25 mm and
50 mm, respectively. The depths of field of the band-limited
X waves are almost the same as those of the broad band
nondiffracting X waves obtained from Fig. 3 and are very
close to those calculated from (39).

IV. DISCUSSION

A. Other Nondiffracting Solutions

From (43), it is seen that an infinity of nondiffracting X
wave solutions with lower field amplitude in their X branches
can be obtained by choosing different complex functions 3(k).
In practice, 3(k) can be a transfer function of physical de-
vices, such as acoustical transducers, electromagnetic antennas
or other wave sources and their associated electronics. The

Same format as Fig. 4, except that a 50 mm diameter planar radiator is used.

Rayleigh—Sommerfeld formulation of diffraction [38] can be
used to simulate the resulting beams.

Besides the X waves, there are many other families of
nondiffracting waves that are also exact solutions of the free-
space scalar wave equation (see (3) and (4) and the Appendix).

B. Resolution, Depth of Field, and Sidelobes of X Waves

From (18), it is seen that as @, decreases, the X waves
diminish faster with both » and | z — (¢/ cos (t) |, and hence
they have higher lateral and axial resolution. This requires
that the radiator system has a broader bandwidth because the
lerm exp{—apw/c} in (26) will diminish slower for smaller
ay. For larger values of sin (, the lateral resolution will be
increased while the axial resolution is decreased. The —6-dB
lateral and axial beam widths of the zeroth-order broadband
nondiffracting X waves ((17)) are determined by (40) and (41),
respectively.

For finite aperture, the X waves are nondiffracting only
within the depth of field. The depth of field of finite aperture
nondiffracting X waves is related only to the size of the
radiator and the Axicon angle ¢ ((39)). Bigger values of
sin ¢ will increase the lateral resolution ((40)) but reduce the
depth of field. This trade-off is similar to that of conventional
focused beams. For band-limited nondiffracting X waves, the
lateral and axial beam widths are increased from those of the
broadband X waves, but the depth of field is about the same.

The X waves have no or lower sidelobes in the (z — e3¢)
plane than the .J, Bessel nondiffracting beam [21], see Figs.
3 and 6. They do have energy along the branches of the X
that becomes smaller as the radius r increases (see Figs. 1,
2, 4, and 5). 1t is fortuitous that the realizable band-limited X
waves present lower field amplitude in their X branches than
the broadband X waves (Figs. 4 and 5). In acoustical imaging,
the effect of energy in the X branches could be suppressed
dramatically by combining X wave transmit with dynamic
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spherical focused receiving as was proposed for the Jp Bessel
nondiffracting beam [25].

C. Edge Waves and Propagation Speed of the X Waves

It is seen from Figs. 3(b) and 6(b) that there is some energy
in the waves produced by the edge of the aperture because of
sharp truncation of the pressure at the edge of the radiators.
These edge waves can be reduced by apodization lechniques
[39] that use window functions to apodize the edge of the
aperture. (The results in Figs. 1 to 6 are obtained with a
rectangular window aperture weighting.)

Fig. 7 shows reduction of the edge waves with aperture
apodization. Figs. 7(a) (except panel (4)) and 7(b) show the
lateral and axial beam plots, respectively, of band-limited X
waves produced by a 25-mm-diameter radiator. The full and
dotted lines represent the beam plots before and after the
aperture apodization, respectively. The apodization function
is given by (44) (see bottom of page), where vy = 3D/8, D is
the diameter of the radiator, and r is the lateral distance from
the center of the radiator. Panels (1), (2), and (3) in both Figs.
7(a) and 7(b) represent the beam plots at distance =z =30 mm,
90 mm, and 150 mm, respectively. Fig. 7(a4) plots the peak
value of the X wave along the axial axis from z =6 mm to
400 mm. The edge waves are reduced around 10 dB within
the depth of field by the aperture apodization. The depth of
field of the X wave is reduced from 173 mm to about 147 mm
after the aperture apodization because of the reduced effective
size of the aperture.

From (17), it is seen that the X waves travel with a speed
faster than sound or light speed, ¢ (superluminal). For example,
if € = 4", the X waves will travel about 0.2% faster than .
This is also the case of Durnin’s .J; Bessel beam. From (10),
for n = 0, we obtain

B, (2 — ert) = Jo(wer)ePE—t) (45)

where ¢; = w//3 and 7 = VE* — o < k. Therefore. ¢ =w/h <
€1

This is explained in the following: For large radius, r, on
the surface of a radiator, the wavefront of the X wave is
advanced. It is these wave fronis that construct the X wave
at large distances as the influence of the wave fronts from the
center of the radiator dies out. The wave energy radiated from
each side of the radiator travels at the speed of sound, ¢, but
the intersection, or peak, of these waves travels greater than
the speed of sound.

D. Total Energy, Energy Density and Causality

Like the plane wave and Dumin’s beam, the total energy
of an X wave is infinite. But, the energy densily of all these
waves is finite. Approximate X waves are realizable with finite
apertures and with finite energy over a deep depth of field.

From (17), it is seen that at a given distance z, the X waves
extend from > — oc to ¢ < >c¢. Therefore, they are not causal,
but the X waves produced by fininte aperture diminish very
fast as | t | —oc. If we ignore the X waves for | ¢ | > #g, where
| @x, (7. tn) |<< L, these modified X waves can be treated as
causal waves. Similarly, Ziolkowski’s localized wave [2], and
modified power spectrum wave [3] suffer from the problem
of causality, but they are closely approximated with finite
aperture by using this same causal approximation [10].

We do not worry about the superluminal solutions, non-
causal solutions, infinite total energy or infinite apertures
as long as the pressure distributions over an aperture are
sufficiently well behaved that they can be physically realized
and truncated in time and space and still produce a wave of
practical usefulness. Theoretical X waves are superluminal,
noncausal, and have infinite total energy and apertures, bul
they can be truncated to produce practical waves. One example
was given in reference [34]. where a zeroth-order X wave was
physically realized over a deep depth of field in an experiment
using an acoustic annular array transducer [21], [22].

E. Application of X Waves to Acoustic Imaging
and Electromagnetic Energy Transmission

The real part of (17), Re[®xpgp,], has a smooth phase
change over time, ¢, across the transverse direction, r. This
makes it possible to realize X waves with physical devices.
Therefore, a broadband acoustic transducer could be used
to produce X waves in Figs. 1 to 3, while a band-limited
transducer could generate those in Figs. 4 to 6. The electrodes
of an acoustic broadband PZT ceramic/polymer composite
transducer can be cut into annular elements [21] and each
element driven with a proper waveform depending upon its
radial position. Annular array transducers can be used for both
X wave transmitling and conventional dynamically spherical
focused receiving [34]. The low sidelobes of a Gaussian
shaded receiving would suppress the off-center X wave energy
and produce high resolution, high frame rate, and large depth
of field acoustic images.

The X wave solution to the free-space scalar wave equation
can also be applied Lo electromagnetic energy transmission for
private communication and military applications [7]. (Non-
diffracting electromagnetic X waves are discussed in detail in
[40].)

V. CONCLUSION

We have developed a new family of nondiffracling waves
that provides a novel way lo produce focused beams without
lenses. They are realizable with finite apertures and with
broadband and band-limited planar radiators with decp depth
of field. The energy on the X branches of the X waves could
be suppressed dramatically in imaging by combining the X

VEr<n

1.0
wir) = {

: 27 |'+g—2‘r|) : L
0.42 — 0.5 cos —(—DT + 0.08 cos y3]

(r+2-21) (44)
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waves with a conventional dynamically spherical focused
receiving system to produce high contrast images [22]. Char-
acterization of tissue properties could be simplified because of
the absence of diffraction in X waves. In addition, the space
and time localization properties of X waves will allow particle-
like energy transmission through large distances, as is the case
of Ziolkowski’s localized wave mode [7].

APPENDIX

Theorem: Functions ®-(s), ® j(s), and @ (s) are exact
solutions of the free- spdce scalar-wave equation (1).

Proof: The functions EI’Q( s) and @ g-(s) are linear sum-
mations of function f(s) over free parameters k and (,
respectively, see (2) and (3). Therefore, if we can prove f(s)
is an exact solution of (1), ¢C(s) and @ p-(s) will also be
exact solutions. (For example, one can directly prove that (14)
is an exact solution of the free-space scalar wave (1). Using
the expression of s in (5), we obtain

d )
d—{—?a—fag(.ﬁ C)eos (¢p—8) (46)
) 17d
-, ( = ) ! {a—itln(k‘ﬂ)(‘m(fﬁ‘?)
;) 'Z{(Yu(.‘l ¢)cos® (¢ —H)} (47)
% = 3—{ [—-(‘\*[](;i:. C)-’f' ]in ((f} — 9)1 (48)
1 92 f 1 92
= dm{ = 25 ;a (k.C)r% sin? (¢p — 6)
%a—j[—cm(k‘,(:}-r cos (¢p — 6)] (49)
1a( 8 1 & a2f o,
[;E(T(}l) “+ ﬁ&[)——’]f = Tq{”ﬁ(’“() (50)
a* o2 .
=Tl 61
188 1L 82f ., 875,
_[_26’5 =— dq-f 2(k, ) (k. ©) (52)
10(.8), 12 # 10,
[ra "or) T Eop To2 T @

92 1, o mnE -
= Gk 080, 0) + (8.0 = ¥k 1.0 59

Using (6), the right-hand side of (53) is zero. Therefore,
tI)C(.f.:} and @ f-(s) are exact solutions of the free-space scalar
wave equation (1).

Now we prove ® (s) in (4) is also an exact solution of (1):

Lo 0y, 1 @ 1o
ror \ or r2ap? 022 2|t
.

_[[rto/. 9y 1
“rar"or ) T 12 g2

Because @ (r,¢) is an exact solution of the transverse Laplace
equation ((7)). the right-hand side of (54) is zero. This proves
that @ is an exact solution of the free-space scalar wave
equation (1).

For example, if we choose ®2(z — ¢t) as a Gaussian pulse

J‘I’l(r q’})}fbg(z‘ —ct).(54)

By(2 — of) = ezt /e’ (55)
and P ((r,¢) as Poisson’s formula [41, p. 373]
B (7. ) = ; / 10 Hel df. (56)
2 a® — 2racos (f — &) +
where
Py (r, P)lr=e = (), (537)

and f(¢) is any function (well-behaved) of ¢, and ¢ and a are
constants, the Gaussian pulse with a transverse field pattern
@ (r,¢) will travel to infinity at the speed of sound or light
without any change of pulse shape.

The transverse field ((56)) has the following properties:

{rli.l'i D (r.¢p) = iﬁiz%}@l(v-. ) = 51; Jr f(8)d6

Ifrifa = afrs. &y (ry, b)) = tIn Ta. ).
This means that if "™ & (r,¢) = 0, then @, (0. ¢) =
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