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Nondiffracting X Waves-Exact Solutions to 
Free-Space Scalar Wave Equation and 

Their Finite Aperture Realizations 
Jian-yu Lu, Member, LEEE, and James F. Greenleaf, Fellow, E E E  

Abstract-Novel families of generalized nandiffracting waves the h t  Ju Bessel nondifFracting annular array transducer [21] 
have k e n  discovered. The7 are exact n o n d i c t i n g  solutions of withPZT ceramic/polymer composite and applied it to medical 
the isotropic/homogenous scalar wave equation and are a gener- acoustic imaging and tissue [22]-[25], camp- 
alization of some of the previoosly known nondiffracting waves 
such the plane wave, Durnin,s beams, and the bell era/ .  had a similar idea to use an annular array to realize 

portion of the M~~~ beam equation in to an infini@ a Jo Bessel nondiffracting beam and compared the JO Bessel 
of new beams. One subset of the new nondihcting waves have beam to the Axicon 1261. 
X-like shapes that are termed "X waves.'' These nondiffracting [n this paper, we repon families of generalized nondiffract- 
X waves can be almost exactly realized over a finite depth of ing solutions of the free-space scalar wave equation, and 
field with finite apertures and by either broad band or band- 
limited radiators. With a 25 mm diameter planar radiator, a specifically, a subset of these nond~ffracting solutions, which 

zeroth-order broadband x wave will have about 2 5  mm lateral we term X waves (so-called X waves because of ole appear- 
and 0.17 mm axial 6 d B  beam widths with a -6-dB depth ance of the field distribution in a plane throu)fh the axis of 
of field of aboot 171 mm. The phase of the X waves changes 
smoothly with time across the aperture of the radiator, therefore, 
X waves can be realized with physical devices. A zeroth-order 
hand-limited X wave was produced and measured in water by 
our 10 element, 50 mm diameter, 2.5 MHz PZT ceramicipolymer 
composite J o  Bessel nondirfracting annular array transducer 
with -&dB lateral and axial beam widths of about 4.7 mm and 
0.65 mm, respectively, over a -6-dB depth of field of about 358 
mm. Possible applications of X waves in acoustic imaging and 
electromagnetic energy transmission are discussed. 

I. INTRODUCTION 

I N 1983, J. N. Brittingham [I] discovered the first localized 
wave solution of the free-space scalar wave equahon and 

called it a self focus wave mode. In 1985, another localized 
wave solution was discovered by R. W. Zmlkowski [2] who 
developed a procedure to c o n m c t  new solutions [3] through 
the Laplace transform. These localized solutions were Further 
studied by several investigators [4]-191. An acoustic device 
was conshucted to realize Z~olkowski's Modified Power Spec- 
trum pulse that is one of the solutions of the wave equation 
through the Laplace transform [lo]. 

In 1987 J. Dumin discovered independently a new exact 
nondifkacting solution of the free-space scalar wave equation 
[XI]. Thissolution was expressed in continuous wave form and 
was realized by optical experiments [12]. Dumin's beams were 
further studied in optics in a number of papers [13]-1191. Hsu 
et al. [20] realized a Jo Bessel beam with a narrow band PZT 
ceramic ultrasonic transducer of nonumform poling. We made 

the beam). The X waves are a frequency weighted Laplace 
transform of the nondiffracliug portion of the Axicon beam 
equations 1271-[33] (in addition to the nondiffracting portion, 
the Axicon beam equation contains a factor that is proportional 
to fi that will go to infinity as z + XJ [31]) and travel 
in free-space (or isotropic/bomogeneous media) to infinite 
distance without spreading provided that they are produced 
by an in6nite aperture. 

Even a d h  Enite apertures, X waves have a large depth of 
field. (For example, with 25 mm diameter radiator, a zeroth- 
order broadband X wave will keep 2.5 mm and 0.17 mm 
-6-dB lateral and axial beam widths, respectively, and have a 
171 mm depth of field that is about 68 times the -6-dB lateral 
beam width and 7 times the radiating diameter.) We have 
experhnentally produced a zeroth-order band-limited X wave 
[MI. We used our 10 element, 50 mm diameter, 2.5 MHz PZT 
ceramicipolymer composite JO -el nondiffracting annular 
array transducer [XI, [22]. The X wave had -&dB lateral and 
axial beam widths of about 4.7 mm and 0.65 mm, respectively, 
over a 6 - d B  depth of hid of aboul358 mm. 

In comparison with Ziolkowski's localized wave mode [Z], 
[3], the peak pulse amplitude of the X wave is constant as 
it propagates to infinity because of its nondiffracling nature. 
Durnin's beams are nondiffracting at a single frequency but 
will diffract (or spread) in the temporal direction for multiple 
frequencies [22]. X waves are multiple freqwncy wares bur 
they nre nondiffracfing in both frajrrverse and ariol dzrec- 
lions. 

Like the Jo Bessel nondifEracling beam [21)-[25], X waves 
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In Section 11, we first introduce the families of generalized The exact solution of the free space scalar wave equation,@t, 
nondiffracting waves and the nondiffracting X waves. Then, represents a family of nondifhacting waves because if one 
we prov~de two specific X wave examples. The production travels with the wave at the speed, c, i.e., z - rt =constant, 
of X waves with realizable finite apenure radiators and finite both the lateral and axial complex field patterns, Ql(r, 4) and 
bandwidths are reported in Section IE. Finally, in Sections N @z(z - rt). will be the same for all time, t, and distance, a. 
and V, we discuss further impl~cations of these novel beams. I f r l (k .  C) in (6) is real, "=" in (5) will represent backward 

and forward propagating waves, respectively. (Ln the following 
11. THEORY OF X WAVES AND TWO EXAMPLES analysis, we consider only the forward propagating waves. All 

results will he the same for the backward propagating waves.) We will show hclow three families of generalized non- 
diffracting solutions of the free space (or isotropic/bomogeneous) Furthermore, QC(s) and ari(s) will also represent families 

scalar wave equation. of nondiffracting waves if rl(k.C) is independent of k and C, 

The free space scalar wave equation in cylindrical coordl- respectively. These waves will travel to infinity at the speed of 

rates is given by cl without diffracting or spreading in either the lateral or axial 
directions. This is different from Brittingbam's focus wave 

I F  l ~ = I  

mode [I], and Ziolkowski's localized wave [2] and modified [ ( ) + + - n .  "-0. (1) power spectrum pulse [3] that contain both z - d and z - dt ,  

or both z - ct and z + c+ terns in their variables, where c and 
where = represents radial coordinate, d, is ,, are different 
azimuthal angle, z is axial axis. whtch is perpendicular to the we find mC(s) is 'he most interesting solution. In the 
plane defined by r and d,, f is timime and represents acoustic following, we will discuss @<(s) only. QC(s) is a generalized 
pressure or Hertz potential that is a function of r, (1, 2, and t. 

function that contains fiome of the nondiffracting solutions of 
The three functions below are families of exact solutions of 

the free space scalar wave equation known previously, such 
(1) (see the Appendix): 

as, the plane wave. Durnin's nondlffracting beams, and the 
nondiffracting portion of the Axicon beam in addition to an 

$(s) = [T(k) [$ J4v)f(s)&] dk (2) infinity of new beams. 

-C If T(k) = li(k - k'), where S(k - k') is the Diiac-Delta 
function and k' =w/e > 0 is a constant, f ( s )  = e', rro(k,C) 

vr I = - r @ .  b(k. C) = = iw/cl, from (2) and (5), one obtains 

a )  = j )  [ / (3) Du'"in9s ~o~d i fhc t i ng  beam ,111 

-77 -li 

QD(s) = - [L i A(@)p-%" 'CO ' (6 - f l )n ( )  p ' ( f l*- l )  I (8) 
QL(T,$. z - r t )  = @1(r. $)@?(z - c Y )  (4) -= 

where where 

s = ( Y ~ ( ~ . < ) T ~ o s  (4 - 8) + b(k, <)[a & cl(k. C)t] (5) / j =  ,,&GF (9) 

and where where n is a constant and w is angular frequency. If A(@) = 
i"+"', we obtain the nth-order nondiffracting Bessel beams: 

cl(k.C) = cJl+ [na(k, <)/b(k.~)]' ( 6) 
Q 7, (.F) = J,, ( ( ~ T ) P ' ( ' ~ - ~ ~ + ~ ~ ) .  (n = 0. 1. 2, . . .). (10) 

where T ( k )  is any complex function (well behaved) of k and 
could include the temporal frequency transfer function of a If n = 0, one obtains the Jo Bessel nondiffracting beam. From 
radiator system, A(@) is any complex function (well behaved) (S), it is seen that cl(kl, C) of the Dumin beams is equal to 
of 0 and represents a weighting function of the integration with w//i and is dependent upon k'. Therefore, if T(k)  in (2) is 
respect to 8, f (s) is any complex lunction (well behaved) a complex function containing multiple kequeucies, a<(.?) 
of s, D(C) is any complex function (well behaved) of C will represent a dispersive wave and will dBract in the axial 
and represents a weighting function of the integration with direction, a. If both 7~ and n are zero, (10) represents the 
respect to 5, which could be the Axicon angle ((I I)), rxo(k,t) plane wave [ll]. 
is any oomplex function of k and (. b(k.0 is any complex If in (2), we let T(k) = 6(k - k'). ,f(s) = e', A(@) = i"ee, 
function of k and 5. The term c: is wndant in (I), k and cun(k,i)=-iksinc, b(k,C)= zkcosC, where k' =w/c > 0 is a 
C are variables that are independent of the spatial position, free parameter, and C represents the Axicon angle (we confine 
r'= (rcos$, rs in$,  a),  and time, t, and Qz(a - ct) is any 0 < C < ~ 1 2 ) ~  we obtain the nth-order nondiffracting portion 
complex function of z - rt. Ql(r,$) is any solution of the of the Axicon beam [31]: 
following transverse Laplace equation (an example of Ql(r, dl) 
is given in the Appendix): (PAn(s) = ~ , ( k ' r  sin ~)e ' (" ' "~"~-" '~+"* ) ,  (n = 0, 1, 2, ...). 

1 8' (11) [:$(';) +;iw]@l(r , , i=~.  Q 
From (1 l), it is seen that c1(k1,C) = clcosC is independent of k', 
which means that the waves constructed horn QA,,(B) by (2) 
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will have a constant speed ci for all frequency components and 
will be nondispersive. The X waves derived in the following 
are such waves that are nondiffracting or nonspreading in both 
lateral and axial directions. 

We obtain the new X wave if in (2), we let T(k) = 
B ( k ) r - ' ~ ~ ,  A(@) = znean8, ao(k,() = -iksinC, b(k,C) = 
ika)s<,  f (s) = ee, obtaining 

This is an integration of the nth-order nondiffracting portion 
((11)) of the Axicon beam equation multiplied by B(k)e-nok, 
where B(k)  is any complex function (well behaved) of k 
and represents a transfer function of a practical radiator 
system, k =wlc, a0 > 0 is a constant, and < is the Axi- 
con angle [31]. From the previous discussion, it is seen 
that ex, is an exact nondfiacting solution of the free- 
space scalar-wave equation (1). Equation (12) shows that 
as,, is represented by a Laplace transform of the function, 
B(k)J,(krsinC), and an azimuthal phase term, ein*. Because 
the waves represented hy @x, have an X-like shape in a plane 
through the axial axis of the waves, we call them nth-order 
X waves. 

We finish this section with two new nondiffracting X 
wave examples. The first represents an X wave with broad 
bandwidth, white the second LF a band-limited X wave. 

Example I: First, we describe an expression for an X wave 
produced by infinite aperture and broad bandwidth. 

Lf, in (12), B(1r) -- ao, we obtain from the Laplace transform 
tables [35] 

giving an nth-order broadband X wave solution (exact solution 
of (1). see the Appendix): 

ao( r  sin <)"em@ 
@xsn, = , (n  = 0, 1, 2, ...) (14) m(7 + mln 

\ / 
where the subscript BE means "broadband," and 

M = ( r s i n ~ ) '  + 7' 
and where 

(15) 

r = [ao - i(z cos < - ct)]. (16) 

For simplicity, we let n = 0, obtaining axially symmetric 

zeroth-order nondfiacting X wave: 

a0 
@SBB~ = (17) 

2/(T sin + [a0 - i(zcosC - rt)12 

The behavior of the analytic envelope of the real part of 
(17). R e [ a . s ~ ~ , ]  is shown in the upper left panel of Fig. 1 
or Fig. 2. The modulus of @XBB" in (17) can be obtained as 
shown in (18) (see bottom of page). 

Now we discuss the lateral, axial, and X branch behaviors 
of this X wave. It is seen from (18) that for 6xed C and no, 
at the plane z = dlcosC we have 

which represents the lateral pressure distribution of the X 
wave through the pulse center and has an asymptotic hehavlor 
proportional to l/r when r is very large. 

On the line r = 0, from (18), we obtain 

which is the pressure distribution of the X wave along the 
axial axis, a, and has an asymptotic behavior proportional to 
1/ I z - &t I when I z - +t I is very large. 

The pressure distribution of the X wave along its two 
branches (see Figs. 1 and 2) can be obtained when 

sin C cos C 

where 

cos C c 
- I z - - t I > l  Qo ca? < 

and from (18) we obtain 

which has an asymptotic behavior that is proportional to 
114- when I z - +t I isvery large. This is the 
direction of slowest descent of the X wave ampl~tude from 
its center. 

From (19). (ZO), and (Z), it is seen that the smaller a,, 
is, the faster the function I @.yns, I diminishes as r or 
I z - -t I increases. If sin< is small, the diminution of 
I (P.~:) will he slow with respect to r  and fast with respect 
to I e- &f. ( . This means that if the X waves are applied to 
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Fig. I. Pmel (a) ruprcsenls !he carul ren, l i~-~rdci  snndillincliily X u.llvc solution of Ihc free-spilcc rcnlal. wave cqualion. Panels (h), 
(c), and (d) are lhc ilppnlpriale rcmlh-order nundilfracling X waver cal~uiuted from !he Raylcigh-SnmmerfcId dilfraclion inlegral 
wiih a 25-rnm diamelsi planar radValilr a1 dirwncra : =YI mm. 9Ll mm. and !SO mm, re.ipeclively. The dirncnsion of each panel 
is 12.5 mm x 6.25 mm. U ( f i )  = <!u. <= 4" bmd rr,,  = 11.05 nmm. 

Fig. 2. Same fumlal :LS Fiz. 1. crcrpl ihiil  r 50 rnm diamcmt piansr radiator is used 

imaging, smaller ncj will give better resolutions in both lateral example. If B(k)  is a Blackman window function [36]: 
and axial directions, while smaller sin ( will reduce the Lateral 
resolution while increasing the axial resolution. 

{ 
R" b.32 - 0.Srori 2 + 0.OXrori v]. 0 5 12 < 2L" 

At thecenter of the zeroth-order X wave (r  = 0. r = rf /cos B ( k )  = 
C), Qsas,  -- 1 for all distance, z ,  and time, t (see (17)). 0, otherwise 

(24) 
which is unlike Z~olkowski's localized wave [2] and moditied we can approximate the bandwidt~, of a real transducer. 
power s p c m m  pulses (11 that recover their pulse peak values Although we cannot find an analytic expression for Q.s., 
periodically or  aperiodically with distance, z. from using (24) in (12) by directly looking up a Laplace 

E.x~mple2: Because B(k1 in (12) is free. it may be chosen transform [able, we will describe in thesection El the resulting 
to achieve realizable bandwidth as shown in the following nondiffracting beam calculated for some 6nite apertures. 
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111. REALIZATION OF 14 WAVFS WITI~ and F-' represents the inverse Fourier transform. The first and 
RNTE APERTURE RADLATORS second terms in (30) represent the contribution from high and 

The extension and therefore the apenure requirement of X low frequency 

waves in space is infinite (see (12)). But we show that nearly Because B ( w / r )  in @8) $ independent of r' and #. (30) 
can be rewritten in another form I 

exact X waves can be realized with b i t e  aperture radiators 
over large axial distance. To calculate X waves kom the b i t e  
aperture radiators. a specmm of X waves is used. Equalion ( k )  = B ( ) )  ($7 = 0 1 2 . ) (32) 

(12) can be rewritten as (25) (see bottom of page). which is 
where 

an inverse Fourier transform of the function (spectrum of X 
waves) 

pik.r.c~l 

'"JB (:) J ,  (>sin C) dl'. kITz 

(I 0 
"(11 

. ( r e  = 0.1.2.. . .) 2~ D(2 piiir.ol, 

(26) +' ,id1 r ' ~ l r ' ~ ~ . ( l ' .  4'. alix 
2rr 

i )  I) 
"01 

where (r l  =0.  1. 2. ...) (33) 

is the Heaviside step function P7J. an,, (7.t) = F-' B 
At the plane z = 0. (26) becomes 

[ (;)c,, (.?. ;)I 
Lu' I".+, (T, $. ,) = B (%) En, (r .  ~[j. z) , (11 = 0.1.2.. . .) (28) 

= F B ( 1  * [ ( ) I  (34) 
r c 

where 

The spectrum m (28) is used to cal~vlate X waves Gom 
radiators with finite aperture. If we assume that the radiator is 
circular and has a diameter of D, rhe Raylcigh-Sommerfcld 
formlilation of diffraction by a plane screen [38] can he written 
as 

and 

mB, (F.  t )  = F-I pa, (<:)I , ( ,  = 0. 1. 2, ... ) (31) 

where A is wavelength, roi is the distance between the 
observation point, F, and a point on the source plane (r'. 4'). 

where * denotes convolution on time, 1, and F '[B(w/r.)] can 
be taken as an impulse response of the radiator. 

We now deqcrihe an example of an X wave produced hy 
a finite aperture. Let B ( k )  = f ro ,  C = 8". (sin4' r= 0.0598, 
cos4" r= 0.9981, nu = 0 05 nim, n = 0, and c = 1.5 mmib~r 
(speed of sound in water). The analytic envelope of the real 
part of an,,, RI'[@R~].  calculated fronl (33) and (34) is given 
in Fig. I and Fig. 2, when the d~ameter of the radiator, D, 15 

25 mrn and 50 mm, respectively. The X waves are shown at 
,- = 30mm, 90 mm. and 150 mm, respectively. These X waves 
compared well to the analytic envelope of the real part of 
the exact nondiffracting X wave solution, RP[@.YBB,,], where 
@yos,, is given by (17) (see upper-left panel of Fig. 1 or 2). 

Fig. 3 shows beam plots of thc X waves in Figs. 1 and 2. 
Figs. 3(al), 3(a2), and 3(a3) represent the lateral beam plots 
of the X waves produced at Lhe axial distances z =30 mm, 
90 mm, and 150 mm, req)ectively, through the center of the 
pulses. The full, dotted, and dashed lines represent the beam 
plots of the X waves produced by a 25 mm diameter radiator, 
50 mm diameter radiator, and the exact nondiffracting X wave 
solution of the free-space scalar wave equation (real pan of 
(17)), respectively. Fig. 3(a4) represents the peak of the X 
waves along the axial distance, z, from 6 mm to 400 mm. The 
4 - d B  depths of field of the X waves are about 171 mm and 
348 mm when thc radiator has diameters of 25 mm and 50 
mm, respectively. The -6dB lateral heam width throughout 
the depth of field i6 about 2.5 mm. 
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Fig. 4. RayleigMommerieid aiculalion 01' [he zemlh-ndcr nundill'rilcling X w;tves pmduucd hy a 25 nuu diameter. hand-limiled 
planar radiator at distances ; =30 mm. 90 mm, and 150 mm. Thc ritdi;dor lrilnslcr rundiun Lllkl is a Blackman window Function 
peaked at 3.5 MHz with a --(,-dB hilndwidlh about 2.88 MHz. The dirncnsian ol silch psnrl is 12.5 mm x 6.25 mm. C = 4' 
and a" =0.05 mm. 

Figs. 3(bl) to 3(b3) are axial beam plots of the X waves 
with respect to c l t  - z and correspond to Fgs. 3(al) to 3(a3), 
respectively. ( e l=  c/cos<. For ( = 4", cl ;= 1.002c.) The edge 
waves produced by the sharp mtncation of the pressure at the 
edge of the radiator are clearly seen. These edge waves can 
be overcome by using proper aperture apodizalion techniques 
[39] and will be discussed in the next section. The -6-dB 
axial beam width obtained from Fig. 3@) is about 0.17 mm. 

The depth of field and the lateral and axial beam widths 
of the zeroth-order broadband X wave produced by a radiator 
of diameter D can be determined analytically in the follow- 
ing. For any given angular frequency, wo, (30) represents a 
continuous field of an aperture shaded by a .lo Bessel function 

where 

and 

The depth of field of this JO Bessel beam is determined by 

L111 

Substituting (37) into (38). we obtain 

which is independent of frequency * a !  If C= -1" and D = 
25mm, we obtain, from (39). z,,=178.8 mm, which is very 
close to what we obtained from Fig. 3(a)(4) (171 mm). 

The 6 - d B  lateral beam w~dth of the X waves can be 
calculated from (19). whlch is 

and the -&dB axid beam width is obtained from (20) 

I .  2dnn 2 1 ; - t ( = - .  1-03 < cos < 

When no = 0.05 mm and i = 4*, the calculated -6-dB 
lateral and axial beam widths are about 2.5 mm and 0.17 mm, 
respectively, which are the same as we measured from Fig. 3. 

Figs. 4 and 5 are the analytic envelope of a zeroth-order 
hand-limited nondiffracting X wave produced by a radiatar 
of diameter of 25 mm and 50 mm, respectively, when B(L) 
is chosen as a Blackman w~ndow funcuon (see (24)). The 
parameter ice in (24) for these figures is given by 

where r. =1.5 mrnll~b, fo =3.5 MHz. and the -6-dB band- 
width of ihe Blackman window function is about 2.88 MHz. 
The X waves in Figs. 4 and 5 are a band-limited version of 
those in Figs. 1 and 2. They are the finite aperture realization of 
the convolution of function F-l[B~~ic)]/nlr with (14) when 
ri = 0, that is 

D 
Z,,, = - rot 5 

2 (39) 
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Fig. 5. Samr formal as Fig. 4. cxcepl lhal a 511 mm d ime le r  planar radiator ir used. 

with n = 0, where B(lo/c) (w 2 Oj can be any complex Rayleigh-Sommerfeld formulation of diffraction 138) can be 
function that makes the integral in (25) converge, "*" denotes used to simulate the resulting beams. 
the convolution with respect to time, t, and the subscript BL Besides the X waves. there are many other families of 
represents "band-limited." nondiffracting waves that are also exact solutions of the free- 

The three panels in Figs. 4 and 5 represent band-limited space scalar wave equation (see (3) and (4) and the Appendix). 
X waves at dislance z =30 mm, 90 rum, and 150 mm, 
respectively. The parameters <and ao are the same as those in B. Resnluhon, Depth of Field, and Sidelobes o f  X Waves 
Figs. 1 and 2, which are 4' and 0.05 mm, respectively. From 
Figs. 4 and 5 ,  it is seen that the band-limited X waves have 
lower field amplitude in the X branches than the widehand X 
waves in Figs. 1 and 2. 

Fig. 6 is the same as Fig. 3, except that it represents the 
lateral and axial beam plots of the band-limited X waves in 
Figs. 4 and 5. The 6 - d B  lateral and axial beam widths of 
the band-limited X waves obtained from Fig. 6 are about 3.2 
mm and 0.5 mm, respectively, at aU three distances ( z  =30 
mm, 90 mm, and 150 mm). Therefore, these band-limited X 
waves are also nondifhacting waves. Theu -6-dB maximum 
nondiffracting distances derived from Fig. 6 are 173 mm aod 
351 mm, when the diameters of the radiators are 25 mm and 
50 mm, respectively. The depths of field of the band-limited 
X waves are almost the same as those of the broad band 
nondiffracting X waves obtamed lrom Fig. 3 and are very 
close to those calculated from (39). 

JV. DISCUSSION 

A. Other Nondiffmding Solutions 

From (43). it is seen that an infinity of nondiffracting X 
wave solutions with lower field amplitude in their X branches 
can be obtained by choosing different complex functions R(k) .  
In practice, B(k)  can be a h-ansfer function of physical de- 
vices, such as acoustical transducers, electromagnetic antennas 
or other wave sources and their associated electronics. The 

. . 

From (IS), it is seen that as n, decreases, the X waves 
diminiqh faster with both r and I r - (el eos Ct) I, and hence 
they have higher lateral and axial resolution. This requires 
ihat the radiator system has a broader bandwidth because the 
lerm expi-aowjc) in (26) will diminish slower for smaller 
0,). For larger values of sin 5, the lateral resolution will he 
increased while the axial resolution is decreased. The -6-dB 
lateral and axial beam widths of the zeroth-order broadband 
nondiffrscung X waves ((17)) are determined by (40) and (41), 
respectively. 

For finite aperture, the X waves are nondiffracting only 
within the depth of fieId The depth of field of finite aperture 
nondiffracting X waves is related only to the sue  of the 
radlator and the Axicon angle C ((39)). Bigger values of 
sinC will increase the lateral resolution ((40)) but reduce the 
depth of field. This trade-off is similar to that of conventional 
focused beams. For band-limited nondiffracting X waves, the - 
laleral and axial beam widths are increased from those of the 
broadband X waves, but the depth of field is about the same. 

The X waves have no or lower sidelobes in the (i - elt) 
plane than the .& Bessel nondtact ing beam [21], see Figs. 
3 and 6. They do have energy along the branches of the X 
that becomes smaller as the tadius r increases (see Figs. 1, 
2, 4, and 5). It is fortuitous that the realizable band-limited X 
waves piresent lower field amplitude in their X hmches than 
the broadband X waves (Figs. 4 and 5). In acoustical imaging, 
the effect of energy in the X branches could be suppressed 
dramatically by combining X wave transmit with dynamic 
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spherical focused receiving as was proposcd fa1 the J" Bessel 
nondiffracting beam [2.5]. 

C. Edge Waves and Propagation Speed ofthe X Waves 

It is seen from Figs. 3@) and 6(b) that there is some energy 
in the waves produced by the edge of the aperture because of 
sharp truncation of the pressure at the edge of the radiators. 
These edge waves can be reduced by apodization techniques 
[39] that use window functions to apodize the edge of the 
aperture. (The results in Figs. 1 to 6 are obtained with a 
rectangular window aperture weighting.) 

Fig. 7 shows reduction of the edge waves with aperture 
apodization. Figs. 7(a) (except panel (4)) and 7(b) show the 
lateral and axial beam plots, respectively, of band-limited X 
waves produced by a 25-mm-diameter radiator. The full and 
dotted lines represent the beam plots before and after the 
aperture apodization, respechvely. The apodkation function 
is given by (44) (see bottom of page). where v1 = 3D/8, D is 
the diameter of the radiator, and r is the lateral distance from 
the center of Ule radiator. Panels (I), (2), and (3) in both Figs. 
7(a) and 7(b) represent the beam plots at distance 2 =30 mm, 
90 mm, and 150 rnm, respectively. Fig. 7(a4) plots the peak 
value of the X wave along the axial axis from z =6 mm to 
400 mm. The edge waves are reduced around 10 dB within 
the depth of field by the aperture apodization. Thc depth of 
field of the X wave is reduced from 173 mm to about 147 mm 
after the aperture apodization because of the reduced effective 
size of the aperture. 

From f17). it is seen that the X waves travel with a speed 
faster than sound or light speed, c (superluminal). For example, 
If C = J", the X waves will travel about 0.2% faster lhan r. 
This is also the case of Durnin's Jo Bessel beam. From (10). 
for 71 = (1, we obtain 

where cl = w//3 and ll = < k. Theretore. c =w/k < 
PI. 

This is explained in the following: For large radius, r, on 
the surface of a radiator, the wavefront of the X wave is 
advanced. It is these wave fronts that construct the X wave 
at large distances as the lneuence of the wave fronts from the 
center of the radiator dies out. The wave energy radiated from 
each side of the radiator travels at the speed of sound. r.. but 
the intersection, or peak. of these waves travels greater than 
the speed of sound. 

D. Total Energy, Energy Dettsir?. U J I ~  Causality 

Like the plane wave and Durnin's beam, the total energy 
of an X wave is infinite. But, the energy densi~y of all these 
waves is finite. Approximate X waves are realizable with finite 
apertures and with finite energy over a deep depth of field. 

From (17). it is seen that at a given distance z, the X waves 
extend from t> - co t o t  < m. Therefore, they are not causal. 
but the X waves produced by fininte aperture diminish very 
last as I t I -%. lf we ignore the X waves for I t I > t o ,  where 
I e.~,, (r'. to) I<< 1, these modified X waves can be treated as 
causal waves. Similarly. Ziolkowski's localized wave 121, and 
modified power spectrum wave 131 suffer from the problem 
of causality, but they are closely approximated with finite 
aperture by using this same causal approximation [10]. 

We do not wony about the superluminal solutions, non- 
causal solutions. infinite total energy or infinite apertures 
as long as the pressure distributions over an aperture are 
slrFficienLly well behaved that they can be physically realized 
and truncated in time and space and still produce a wave of 
practical usefulness. Theoreucal X waves are superluminal, 
ooncausal, and have infinite total energy and apertures, but 
rhey can be truncated to produce practical waves. One example 
waq given in reference [34], where a zeroth-order X wave was 
physically realized over a deep depth of field in an experiment 
using an acoustic annular array transducer [21], [22]. 

E. Application of X Waves to Acoustic Imaging 
and EIecrromagtie~ic Energy Tra~ismi.~sion 

The real part of (17), R C [ ~ ~ ~ ~ , ] .  has a smooth phase 
change aver time, t ,  across the transverse direction, r .  This 
makes it possible to realize X waves with physical devices. 
Therefore, a broadband acoustic transducer could be used 
to produce X waves in Figs. 1 to 3, while a band-limited 
transducc~ could generate those in Figs. 4 to 6. The electrodes 
of an acoustic broadband PZT ceramictpolymer composite 
transducer can be cut into annular elements [21] and each 
elcmcnt driven with a proper waveform depending upon its 
radial position. Annular array transducers can be used for both 
X wave transmitling and conventional dynamically spherical 
focused receiving [34]. The low sidelobes of a Gaussian 
shaded receiving would suppress the off-center X wave energy 
and produce high resolution, high frame rale, and large depth 
of field acoustic images. 

The X wave solution to the free-space scalar wave equation 
csn also be applied lo electromagnetic energy transmission for 
private communication and military applications [q. (Non- 
diffracting electromagnetic X waves are discussed in detail in 
r401.1 

We have developed a new family of nondiffracting waves 
that provides a novel way to produce focused beams without 
lenses. They are realizable with finite apertures and with 
broadband and band-limited planar radiators w ~ t h  deep depth 
of field. The energy on the X branches of the X waves could 
be suppressed dramatically in maging by combining the X 
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waves with a conventional dynamically spherical focused 
receiving system to produce high contrast images 1221. Char- 
acterizahon of tissue properties could be simplified because of 
the absence of diffraction in X waves. In addition, the space 
and time localization properties of X waves will allow particle- 
ltke energy transmission through large distances, as is the case 
of Ziolkowski's localized wave mode [7]. 

APPENDIX 

Theorem: Functions @f(s), P,K(.v), and mL(s) are exact 
solutions of the free-space scalar-wave equatton (1). 

Proofl The functions QC(s) and are linear sum- 
mations of function f (B) over free parameters k and C, 
respectively, see (2) and (3). Therefore, if we can prove f (s) 
is an exacl solution of (I), @C(s) and ah-(s) will also be 
exact solutions. (For example, one can directly prove that (14) 
is an exact solution of the free-space scalar wave (I). Using 
the expression of s in (51, we obtain 

Using (6), the right-hand side of (53) is zero. Therefore, 
a c t s )  and Q K ( s )  are exact solutions of the free-space scalar 
wave equation (1). 

Now we prove eL( s )  in (4) is also an exact solution of (1): 

Because @l(r,d) is an exact solution of the transverse Laplam 
equation ((7)). the right-hand side of (54) is zero. ThLs proves 
that @L is an exact solution of the free-space scalar wave 
equation (I). 

For example, if we choose Q ~ ( z  - ct) as a Gaussian pulse 

*2(t - d) = e-(:-ct12/"l (55) 

and Ql (r.4) as Poisson's formula 141, p. 3731 

where 

and .f($) is any function (well-behaved) of 4. and n and a are 
constants, the Gaussian pulse with a lransverse field pattern 
@,(T,&) will travel to infinity at the speed of sound or light 
without any change of pulse shape. 

The banweme field ((56)) has the following properties: 

This means that if yL%@l(~.r/l) = 0, then @1(0,31) = 0. 

The authors appreciated the secretarial assistance of Elnine 
C. Qnarve and the graphic assistance of Christine A. Welch. 
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