
OBTAINING LIMITED DIFFRACTION BEAMS WITH THE WAVELET TRANSFORM 

Hehong Zou, Jian-yu Lu and James F. Greenleaf 
Biodynamics Research Unit, Department of Physiology and Biophysics. 

Mayo Clinic and Foundation. Rochester. MN 55905 

ABSTRACT 

Generating limited diffraction (or nodiBracting theoreti- 
cally) beams involves deriving special solutions to a homo- 
geneous wave equation Previous results have been derived 
by the Fourier [I] and Laplace [6l transforms. In this paper. 
we use the wavelet transform to obtain a novel non&acting 
solution. It can be shown that this new solution is equivalent 
to the second derivative of Lu-Greenleaf's z r e t h  order X 
wave [6] or the fist derivative of DonneUy's Localized wave 
[I]. The advantage of the wavelet beams is their localization 
property. that is, they have smaller sidelobes compared with 
the previous d t s .  The magnitude decays as l/r3 along 
the lateral (I) direction. Although the slowest decay is still 
1 / f i  asymptotically. the sidelobes are reduced to about half 
those of the broadband X wave [61. We also show that this 
new nondifractlnz beam can be realized as a limited diffrac- 
tion beam with &te enesy and finite aperture ultrasound 
transducers. 

I. INTRODUCTION 

The m n t l y  explored limited &action beams (obtained 
from unique nodiBracting solutions to the homogeneous 
wave equation) possess some important desirable features 
and could become an alternative ultrasonic beam forming 
technique. U&e the wnventional focus beams. which 
usually focus in fixed or varying points, such a beam focuses 
all the way along the wave propagation direction. It has been 
shown previously that this new beam has almost constant 
lateral and axial beam profiles within a large depth of field. 

Obtaining limited diffraction beams involves deriving 
special nondiffracting solutions to the free. space (homo 
g e n m )  wave equation. Previous nondiEracting solutions 
have been derived by the Laplace [I] and Fourier [61 trans- 
forms. In this paper, we apply the wavelet theory developed 
by Kaiser L3.41 to obtaining a novel solution to the wave 
equation. It can be shown in 181 that this new solution is 

with the previous results. The magnitude decays as 1/r3 
along the lateral (I) direction. Although the slowest decay in 
the X branch is still l/fi asymptotically, the sidelobes are. 
reduced to about half those of the X wave solution. We also 
show by the computer simulations that this new nondiEract- 
ing wavelet can be realized as a limited diffraction beam 
with finite energy and finite aperture ultrasound transducers. 

This paper serves to summarize the results derived in [91. 
In the next section, the basic idea of free space wave equation 
and localized wavelet solutions are briefly discussed. We 
also show that such a solution can be extended to obtain a 
n&acting solution. The main properties of this wavelet 
beam will be highlighted. We then demonstrate in section 
m that this special wavelet can be realized approxunately 
by bite ape- ultrasonic transducers. Conclusion will be 
made finally in section V. 

II. WAVELETS AND WAVE EQUATION 

It is well known that the ultrasonic wave propagating in 
a homogemems medium is governed by the following wave 
equation 

where +(x, y, z ,  t )  denotes the acoustical pressure at the three 
dimensional space ( x .  y, I) and ! h e  time and c is the speed of 
sound in the medium. To study the wave propagation. it is 
necessary to derive a special solution to the aforementioned 
wave equation. For instance, the previous nodiffacting and 
localized wave solutions are derived by the Laplace [61 and 
Fourier [l] !mmsforms on (1). Alternatively, the wavelet 
theory developed by Kaiser in L3.41 can also be used to 
obtain a localized wavelet solution to this wave equation. 
Specifically. the wavelet transform solution has a closed 
form as. 

equivalent to the second derivative of Ln-Greenleafs zereth where a. is a real constant, = and 
order X wave or the fust derivative of DormeUy's Localized Jx2  + y2 + z 2 .  
wave. The advantage of the wavelet beams is their localiza- 
tion property, that is, they have smaller sidelobes compared Note that the above solution specifies a localized wave. 

It decays in the cubii order along the directions of 2 ,  y, z 

b i s  walr was -med in p~ by pnu CA54212 and CA43920 fmm and t. In other words. the wave governed by (2) does not 
he National Institutes of Health. travel in any spatial direction. However. our goal here is 

1051-0117/93/0000-1087 $4.00 O 1993 IEEE 1993 ULTRASONICS SYMPOSIUM - 1087 



to construct a wave (or beam) which can propagate in the z 
direction as time t and does not spread when propagating. 
That is, we are &g a solution such that the term z - yt 
appears together in the closed form as otherwise obtained 
previously, where y is a real constant related to q m d  of 
sound c. To achieve this goal we k t  solve the following 
equation 

where $(r ,  y, t) denotes the acoustical pressure at the two 
dimensional space (x, y) and time t. Following the same 
wavelet theory developed in r3.41 and extended in [91, one 
can get the following solution, 

where r = m. By interchanging variables 

where C is a real constant, into the above solution, it is easy 
to obtain a new solution. 

Z(a0 + j(zc0.C - ct))' - (rsinc) 2 

d(F, 2,tt) = . . (6) 
[(aO + j ( z  cosc - d))' + ( r s i n ~ ' ]  ' 

Laera1 dlsfancs (mm) -3 &la1 dlaanca (mm) 

figure 1. Real part of wavelet (6) at t = 0 for parameters C = 4 O .  
@O = 0.2 (mm). and c = 1500 (mls). 

This is a nwel nondiffracting solution called wavelet. 
Figure 1 shows the real part of this wavelet at t = 0 
which also resembles an X shape. Fm any other time t .  
the center wave mwes to z = $ while it still maintains 
the same shape according to (6). That is, the wavelet 
propagates in the z (axial) direction with the phase speed 

without spreading or &acting. The advantage of the "0s < 
wavelet beams is their localization property, that is, they 
have smaller sidelobes compared with the previous results. 

The magnitude decays as l/r3 along the lateral (r) direction. 
Although the slowest decay is still 1/fi asymptotically, the 
sidelobes are reduced to about half those of the broadband 
X wave [6]. 

It has also been shown in [91 that Fourier aansfonn (with 
respect to time t )  of (6) has the following closed form, 
@(?,Z,W) = ~ ( $ ) 2 , 7 0 ( ~ r s i n ~ ) p ( ~ ) e - [ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ?  (7) 

where J,T,(.) denotes the rth order Bessel function of the b t  
kind. I'p) is the Gamma function. and p(x) is defined as 
the following step function, 

f4.1 = { 1 f o r x ~ 0  0 0theIWise. (8) 
It is pointed out in 181 that this wavelet solution is the 

h t  derivative of Dcmnally's localized wave and the second 
derivative of Lu-Greenleaf's X wave. Figores 2 (a) and 
(b) show the axial beam prose d(z cosC - ct)li,~ and its 
Fourier transform @ ( w ) l ~ = ~ .  One can see from these two 
figures that d(z cos C - ~t)l;,~ is essentially the Mexican 
Hat wavelet with two vanishing moments (that is, the Fourier 
transform in (7) has a zero of order two at w = 0) [9]. Figure 
2 (c) shows the lateral beam profile of the wavelet, where 
z = &, which is a smooth function. We also draw in 
Figure 2 fd) the wavelet beam profile along the X branch (the 
slowest decay direction). The beam decays quickly around 
its center and slowly when r further increases. Hence. the 
wavelet. like other limited diffraction beams, has relatively 
higher sidelobes than the conventional focused beams at theii 
focal range. 

-10 -5 o s 10 30 -5 o s ro 
mere. dhsnmn (mm) Xbrmch (mm) 

Icl (dl 

e u r e  2. The wavelet beam profile (real pan of (6)). (a) axial 
beam profile, (b) Fourier transform of (a). (c) lateral beam pro&. 
(d) beam profiles along the X branch (i.e, the slowest decay 
dxlrection) 

To summarize so far, the wavelet solution to the scalar 
wave equation is a nondiffracting solution. This type of 
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beam propagates along the axial direction as a group of 
wavelets having two vanishing moments without spreading 
or diffracting. To maintain its non-diffraction nam. a 
relatively strong X branch which decays in order of 
must exist to continuously support the center wave. This 1s 
probably the reason why the unique X like beam can travel 
to idkite distance without changing its spatial shape. 

111. FINITE APERTURE SIMULATIONS 

While the wavelet solution (6) to the free space wave 
equation (1) represents a nondifEracting beam, its exact re- 
alization is rather dif6cult due to two reasons. One is that 
the practical ultrasound transducers may have difficulty gen- 
erating the exactly required waveform (6). O b W  the 
exact waveform by deriving the transducer transfer function 
is not practical because the transfer function varies for dif- 
ferent transducers. Another m c u l t y  results from the fact 
that practical transducers always have ikite aperture size. 
In this section. we discuss the approximate realization of 
the nondiffracting wave that results in the so called l i i t ed  
diffraction wavelet. In this case, the wavelet (6) can travel to 
a large distance (thus large depth of field) while maintaining 
approximately the constant beam profiles. 

We begin by assuming that the wavelet is radiated by 
an ultrasonic source transducer located at the plane z = 0. 
Without loss of generality, one can assume that the radiator is 
circulm and has a finite diameter D. In particular, the Fourier 
transform of 4, the source beam profile, can be written as. 

E(F, w) = @(c z = 0, w) 

= { ~ ( f ) ' ~ ~ ( $ ~ s i n ( ) ~ ( f ) e ~ ~ ~ %  if?+<$, (9) 
0 otherwise 

We now use this source to simulate the waves radiated 
into an isotropic homogeneous medium. According to [21, 
the Fourier transform of an acoustical wave at any spatial 
location (r', s) for any frequency w can be calculated by the 
following Raleigh-Sommerfeld dBaction formula 

2% q 
1 e 3 k ~ o ,  

a F ( ~ , k )  =F J J ~ ~ ~ T ~ ~ T ~ E ( F ,  h)-z 
3X 4 1  

where k = denotes the wave number. The first and second 
terms of the right side in (10) represent the low and high 
fresuency contributions, respectively. 

The transmitted wave received at any point in the field 
can then be obtained through the inverse Fomier !mmdorm 
of (10). that is, 

r$.(F,t) = F-1[@I(r7 k)]. (1 1) 

Figmes 3 (a)-(d) illustrate the wavelet beam p r d e s  at 
depth z = 30,60,90,150 (mm), respectively. The param- 
eters used in this simulation is the same as in the previous 
figures and D = 25 (mm). The peaked value of the pr* 
duced wavelet along the propagation direction is also shown 
in figure 3 (e). It is seen from the figures that the rear 
X branch is gradually weakened as the wavelet propagates 
deeper into the field. Once the rear X branch disappears 
completely. the beam will diffract beyond the depth of field 
Z,,, = 178 (mm) [6,8,91. 

Next. we consider the influence. of the practical ultrasound 
transducer. As shown in the previous simulations and ex- 
periments [6.7,9], the firing excitation of each bransducer m 
this case now becomes, 
Eb(r', W) = E(F, w)B(w) 

D (12) ~ ( f ) 2 ~ o ( $ r s m ( ) p ( ~ ) ~ ( w ) e - a a %  if T < 
0thenvlse' 

where B(w) denotes the transducer W e r  function. which 
can usually be modeled as a Blaclanan window [61. Equa- 
tions (10)-(12) infer that the constructed acoustical field 
can be calculated simply by (11) convoluted by b ( t )  (the 
inverse Fourier !masform of B(w)). The resulting beam 
profiles can be found in [91. 

IV. CONCLUSION 

We have @plied the wavelet theory developed in [3,4.91 
to obrainiog a spxial solution to the free space scalar wave 
equation. The wave governed by this solution is a non- 
&acting beam. Even with a practical ultrasonic transducer 
of finite energy and finite apertnre, a good approximation is 
achieved in that the wavelet has almost constant lateral and 
axial p r d e s  and large depth of field. Comparing our new 
result with the previous ones, it seems that we have achieved 
the l i t  of the nondiiacting beams in which the X branch 
should have sufficient eneay to maintain the nondiffracting 
nature of the beam. As we also have mentioned, practical 
hansducers have system transfer functions similar to figure 2 
(b). This may explain why X wave have smaller side lobes 
when realized by practical ultrasonic transducers. 

Finally, it is worth mentioning here that the recently 
developed wavelet theory is an important tool for the signal 
processing. Not only can it give a closed form wavelet 
solution, but it also has advantages in postprocessing the 
medical images obtained. An interesting example is given 
in [51 in which Daubechies' orthonormal wavelets were 
proposed in the ultrasound imaging system. 

V. ACKNOWLEDGMENTS 

The authors appreciate the secretarial assistan= of Elaine 
C. Quarve. 

1993 ULTRASONICS SYMPOSIUM - 1089 



-4 .. . Axial direction 

Axial daanca (mm) 

Figure 3. (a)-(d) the wavelet beam profiles at Uferent depth 
(a = 30,60,90,150 (mm)) when produced with an ultrasound 
hansducer with diameter D = 25 (mm), (e) the peaked value of 
the produced wavelet along the wave propagation (2) direction. 
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