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Abstract - Limited diffraction beams have a In next section, the method for construction 
large depth of field. They could have appli- of limited diffraction beams will be developed. 
cations in medical imaging, tissue characteriza- Matrix implementation of the method will be 
tion, Doppler velocity estimation, nondestruc- given in section m. some preliminary results are 
tive evaluation (NDE) of materials, as well as shown in section N. The conclusion is given in 
other physics related areas such as electmmag- the final section. 

- 

netics and optics. In this paper, a method is de- 
veloped that uses limited diffraction beams dis- 
covered previously, such as, Bessel beams and 
X waves, as basis functions to construct new 
limited diffraction beams that may have prac- 
tical usefulness. The method is implemented 
with linear matrix operations. Results show that 
the method is powerful and can obtain limited 
diffraction beams that are not intuitive to get 
directly from solving the wave equation. 

I. INTRODUCTION 
Since the discovery of localized waves [I] 

in 1983 and limited diffraction beams [2] in 
1987, efforts have been made to develop new 
beams that have practical applications [3-191. 
Because the previous studies are based on di- 
rectly solving the isotropic-homogeneous wave 
equation, they are limited to a few simpli- 
fied cases [5,19]. To obtain limited diffraction 
beams of desired properties, a general and prac- 
tical method needs to be developed. 

II. METHOD 
Both Bessel beams [2] and X waves [5,6] 

can be used as basis functions to construct new 
limited diffraction beams. Because X waves are 
special linear superpositions of Bessel beams in 
terms of frequency 151, for simplicity, only the 
Bessel basis functions will be used in this paper. 

Theoretically, production of limited diffrac- 
tion beams requires an infinite aperture. In prac- 
tice, these beams can be well approximated with 
a finite aperture over a very large depth of field. 
If the aperture (diameter) of interest is D, the 
depth of field of both X waves and Bessel beams 
can be calculated [5]. 

Let's construct limited diffraction beams 
with linear superpositions of the Bessel beams 
(or the Bessel basis functions) [2,5] of the same 
depth of field within the finite aperture, D. The 
coefficients of the Bessel basis functions for the 
construction can be determined by minimizing 
some "distance" between the constructed beams 

In this paper, a method that can obtain new and the desrred beams or functions within the 
llmited diffraction beams of desired shapes is aperture of interest. If the "distance" is the 
developed. This method uses the Bessel beams least-squares error between the desired and con- 
and X waves studied previously as basis func- structed beams, the above construction can be 
tions to construct new beams. Matrix operations represented by the least-squares formula [20]: 
are used to determine the coefficients of the ba- 
sis functions. 
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where aDT(r, 4) is the function of a desired 
shape in a plane (transverse plane) perpendicu- 
lar to the beam axis, the subscript "DT" means 
"desired and transverse", @ ~ ( r ,  4) is the trans- 
verse part of a designed (constructed) limited 
diffraction beam, (r, 4) are polar coordinates, 
and 11.112 represents L2 norm. With this method, 
one can construct new limited diffraction beams 
of both a desired depth of field and a desired 
transverse beam shape. Although in most cases 
the designed beams may not be exactly the same 
as desired beams, however, these beams are the 
"best" approximations to the desired beams in 
the sense of least-squares error within the aper- 
ture of interest. 

With the Bessel basis functions [2,5], the 
designed limited diffraction beams in Eq. (1) 
can be written by 

@(r, 4,. - c1t) = @T(T, d)e rB(z-c~t) 

N-1 

= [Do Jo (a r )  + D, Jn (a r )  cos n4  
n=l 

N - l  

+ EnJn(ar)sinn4]e zp(z-clt), ( r  5 D), 

where a is a scaling parameter (it is the same for 
all the basis functions so that the Bessel beams 
have the same depth of field), N is an inte- 
ger, Do, D,, andE,, ( n = 1 , 2 ; . , , N - l ) ,  
are coefficients to be determined, z is the ax- 

2 
ial distance, t is time, j3' = .\/(w/c) - or2, w is 
angular frequency, cl = w / p  is the phase veloc- 
ity, and J,(.) is the nth-order Bessel function 
of the first kind. 

Because the transverse variables of the de- 
signed beams in Eq. (2) are separable from the 
axial variable and time, the desired beams can 
be chosen of the form: 

111. MATRIX IMPLEMENTATION 
Substituting Eqs. (2) and (3) into Eq. (I), 

the least-squares formula can be represented by 
a linear system of equations [20] 

where 

and where M is the number of pixels of 
digitized transverse functions within the finite 
aperture, A is an M x (2N - 1) matrix, 
at, = J~ (orrZ) cos jq9 ((2 = 0,1,. . . , M - I ) ,  
( j  =O, l ; . . ,N-1 ) )  and 
a,, = J3-N+I (or?) sin (j - N + I )@ 
{(i = o,1, .  . . , M - I ) ,  
( j  = N , N + 1 ; . . , 2 N - 2 ) )  are the 
elements of the matrix, x is a (2N - 1) x 1 
vector variable, and b is an M x 1 vector 
obtained from a desired transverse beam 
pattern. 

From the normal equation, 

the coefficients, DO, Dn,  and En, 
(n  = 1,2, .  . . , N - l), can be determined: 

Eq. (9) is a least-squares solution to Eq. (1). 
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IV. RESULTS 

With the above method, a question remains: 
how to choose the desired functions? The easi- 
est way is to start with limited diffraction beams 
known previously and then modify them. This 
will be illustrated with the following examples. 

Figs. 1 and 3 show the desired beams that 
are limited diffraction beams developed recently 
[7-91 and functions modified from them. The 
desired and the designed beams are marked as 
"desired" and "designed", respectively. Figs. 2 
and 4 are line plots of the beams in Figs. 1 and 
3, respectively, at some angles, 4, through the 
beam axis. 

Fig. 1 Design of the 4th (panels in the left column) and the 
10th (panels in the right column) derivative bowtie Bessel 
beams with Bessel basis functions. The desired and the 
designed beams are on the top and bottom, respectively. 
The absolute values of the beams are shown. The size of 
each panel is 50 mm x 50 mm, and the scaling factor, 
a, for both the bowtie Bessel beams and~the Bessel basis 
functions is 1202.45 m-'. The numbers of terms for the 
coefficients D, and E, are N and N - 1, respectively, 
where N = 20. Notice that the beams are constructed only 
in the area of a diameter of 50 m m  

Fig. 2 Line plots of the 4th (panels in the left column) 
and the 10th (panels in the right column) derivative bowtie 
Bessel beams in Fig. 1 along the z ( 4  = 0") (panels in the 
middle row) and they (4 = 90') (panels in the bottom row) 
axes. The designed and the desired beams are represented 
by full and dotted lines, respectively. These Lines virtually 
overlap with each other although the number of terms of the 
Bessel basis functions used in the consl~ct ion are small ( N  
= 20). The coefficients, D, (full lines with square points) 
and En (dotted lines with diamond points) are shown in 
the panels on the top row. Because D, and E, are about 
zero for N 2 9, the number of terms of the Bessel basis 
functions can be smaller. The lateral axes of the panels 
in the bottom two rows are from -25 to 25 mm, and the 
vertical axes of these panels are normalized to 1.0. The 
lateral axes of the plots in the top row represent the index, 
n. and the vertical axes are normalized from -1 to I .  

The beams in Figs. 1 and 2 are called 
bowtie Bessel beams [7,8].  With these beams, 
bowtie X waves [7] can be constructed to dra- 
matically reduce sidelobes of pulse-echo imag- 
ing systems while maintaining a very large 
depth of field. We have shown previously [7] 
that such imaging systems have sidelobes as low 
as those using conventional focused beams at 
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their focuses but their depth of field are much 
larger. The layered array beams in Figs. 3 and 
4 are newly developed [9]. These beams consist 
of well-structured layers and therefore have po- 
tential for real-time speed of sound imaging of 
scattering materials [9] (any point sound emit- 
ter traveling through the layered structures of 
the beams will modulate the signals of the re- 
ceiver that has the layered beam response, and 
the period of the modulated signals can be used 
to determine the travelling speed of the emitter 
[lo]). 

Fig. 3 Design of layered array beams (without modification 
(panels in the left column), modified with a step function 
(panels in the middle column), and modified with a strip 
function (panels in the right column)) with Bessel basis 
functions. The desired and the designed heams are on the 
top and bottom, respectively. The absolute values of the 
beams are shown. The size of each panel is 50 mm x 50 
mm, and the scaling factor, k,, of the layered array beams 
is equal to that of the Bessel basis functions, a (1202.45 
m-I). The number of terms of the Bessel basis functions 
is increased from that of Fig. I ( N  = 50). 

It is noticed that when the desired beams are 
modified beams (the step and the strip layered 
array beams in the middle and right columns of 
Figs. 3 and 4), new limited diffraction beams 
that have similar shapes of the desired beams 
are constructed (see the bottom row of Fig.3). 

These new beams would be difficult to obtain 
directly from solving the wave equation. 

Fig. 4 Line plots of the layered array beams (without 
modification (panels in the left column), modified with a 
step function (panels in the middle column), and modified 
with a strip function (panels in the right column)) in Fig. 
3 along the z (4 = O n )  (panels in the middle row) and the 
diagonal (q4 = 45') (panels in the bottom row) axes. This 
figure has the same format as Fig. 2 except that one more 
column is added. The non-smoothness of the line plots 
in the panels of the bottom row is caused by the nearest 
neighbor interpolations when plot along the diagonal axis. 

V. CONCLUSION 
We have developed a method to design lim- 

ited diffraction beams that are the "best" ap- 
proximations to desired functions in the sense 
of least-squares error within the aperture of in- 
terest. The preliminary results show that this 
method is robust and powerful in obtaining lim- 
ited diffraction beams that have practical appli- 
cations. 
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