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Abstract — We havedevelopeda newfamily of limited diffraction electromagnetic
X-shapedwavesbasedon the scalar X-shapedwaves discoveredpreviously. These
waves are diffraction-free in theory and particle-like (wave packets),in that they
maintaintheir shapeasthey propagateo an infinite distance.The “X waves” possess
(theoretically)infinitely extendedarms” and—at least,the onesstudiedin this paper—
have an infinite total enepgy: therefore,they are not physically realizable. However,
they canbe truncatedin both spaceandtime and“approximated’by meansof a finite
apertureradiatorso to geta large enoughdepthof interest(depthof field). In addition
to the Maxwell equations X wave solutionsto the free Schroedingeequationare also
obtained. Possibleapplicationsof thesenew wavesare discussed Finally, we discuss
the appearancef the X-shapedsolutionsfrom the purely geometricpoint of view of

the specialrelativity theory.



. — INTRODUCTION

“Limited diffraction” beams were discovered as early as 1941 by Stratton[1] and
rediscovered by Durnin in 1987 [2,3]. These beams have an infinite depth of field, i.e.,
they can propagate to an infinite distance without changing their wave shape. Durnin
termed these beams “nondiffracting beams’[2] or “diffraction-free beams’[3]. Because
Durnin’s terminology is controversial, we used the term “limited diffraction beams”
based on the fact that in practice al beams will diffract eventually[4,5]. Durnin’'s
beams are also called Bessel beams because their transverse beam profile is a Bessel
function[2]. Bessel beams are monochromatic and are obtained by treating the (scalar)
amplitude related to one transverse component only of either the electric or the magnetic
field of light as a solution to the scalar wave equation[2]. Theoretically, the limited
diffraction beams considered in this paper have an infinite total energy; moreover they
would require an infinite aperture radiator to be produced. In reality, however, these
beams can be truncated in both space and time and can be “approximated” by means
of a finite aperture radiator so to get a large enough depth of interest (a large field
depth)[3]. Because of this property, limited diffraction beams could have applications
in medical imaging[4—14], tissue characterization[15], Doppler velocity estimation[16],
non-destructive evaluation of materialg[17], and other related physics areas such as
electromagnetism[18-20] and opticq 2,3,21], besides —possibly— geophysics (seismic

waves) and even gravitational wave detection (see the following).

Because limited diffraction beams have many potential applications, they have
been studied extensively in recent years in both acoustics[22—35] and optic[2,3,21].

Recently, we have discovered a new family of limited diffraction beamg[36]. These
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beams have been called “ X waves’ because they are X-shaped in a plane passing through
the propagation axis (r — z plane)[37-39]. The X-shaped waves are different from the
Bessel beamg[36] because they contain multiple frequencies and are nondispersive in
isotropic-homogeneous media or free space (Bessel beams are “limited diffraction” at
a single frequency, but become dispersive for multiple frequencies because the phase
velocity of each frequency component is different[9]); moreover, the X-shaped waves
are Superluminal[36,37,40—42], i.e., have Superlumina group velocities, while Bessel

beams are subluminal as it will be shown elsewhere.

In cylindrical coordinates, limited diffraction beams propagating along the » axis

can be written in the following form

O(r, P, z — c1t), Q)

where r, ¢, z, and ¢ represent the radia distance, polar angle, axial distance, and time,
respectively, ® represents acoustic pressure, velocity potential, or Hertz potential, z —cyt
is a propagation term, and ¢; is the velocity of the beam. Because the variables, z and
t, appear only in the propagation term in eq.(1), limited diffraction beams are only a
function of » and ¢ if z—c1t = constant, i.e., traveling with the beam at the speed of ¢4,
one sees a constant beam pattern. Thisis different from conventional focused beamg[43]

and localized waves studied by Brittingham[18] and other investigatorg19-20,44].

In this paper, we will extend the theory of limited diffraction beams to electromag-
netic waves. X-shaped wave solutions to the free Maxwell and the free Schroedinger

eguations will be obtained.

1. — LIMITED DIFFRACTION SOLUTIONS TO FREE MAXWELL EQUATIONS
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A. Maxwell's Wave Equations
In this Section we will present exact limited diffraction solutions to the free-space

Maxwell equations[45]:

v xH:EO%—? 2
VxE= —/Lgaa—It{. 3
V-E=0, (4)
and
V-H=0, )

where E isthe electric field strength, H isthe magnetic field strength, ¢ isthe dielectric
constant of free space (eg ~ 36% x 1079 F/m), po is the magnetic permeability of free
space (9 = 47 x 1077 H/m), and t is time.

From egs.(2) to (5), one obtains the free wave equations

2
E—- -~ —
v c? Ot? 0 ©)
or
. 1 9°H
2
H-— = =0,
\v4 250 0. (7

where V? represents the three-dimensional Laplacian operator, and ¢ = 1/, /2gig is the
speed of light in free space (¢ ~ 3 x 10® m/s). Note that E and H in egs.(6) and (7)

are related by egs.(2) and (3).

B. Scalar Approximation of Maxwell Wave Equations

Equations (6) and (7) can be written by
VQE:U — Clz—a;gr =
VQEy - ciza(‘)% = (8)
V?E. — c%aag =0




2
VZHI_C%(? gz -0
v%&g-%%:o 7 9
VPH. — 5% =0

respectively, where each component of E and H is coupled with the others through

the Maxwell equations (2)-(5). Because of the coupling of the components, it is
difficult to solve egs.(8) and (9) directly. However, in some cases such as optics
and microwaveg46], the equations can be simplified, i.e., only the scalar amplitude of
one transverse component of either E or H is considered and any other components of
interest are treated independently in asimilar fashion (treating light and microwaves as a
scalar phenomenon). This is approximately true under the following conditiong46]: (i)
the diffracting aperture must be large compared with awavelength, and (ii) the diffracted
fields must not be observed too close to the aperture. In this case, limited diffraction
beams devel oped in acoustics4—-20] can be directly applied to electromagnetism because
they share the same wave equation. This was verified experimentally in optics by

Durnin for Bessel beamg[3].

C. Hertz \ector Potential

Another way to solve the Maxwell equations is to use a Hertz vector potential. This

approach is rigorous as opposed to the scalar method above.

Because of eq.(4), the electric field strength can be written[20]
E=- 2V X B (10)
= —Ho ot —=m;

where E,, = ®n?’, is the magnetic Hertz vector potential where n° represents a unit
vector. This implies that the electromagnetic wave given by eq.(4) is a TE polarization

wave that is perpendicular to n° (for TM polarization, the analysis is similar). From
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eg.(3), we obtain

H =V x(V xE,). (11)

By inserting eq.(10) into eg.(2), and using eg.(11) and the Lorentz condition, V - E,,, =
—fm [Em is not unique: i.e., different E,, may all give the same E and H from
egs.(10) and (11), respectively], where f,, is any differentiable scalar function, one

obtains the wave equation that the magnetic Hertz vector potential must satisfy:

D =
1 0°5,,

2=
VEm — =
m C2 atz

— 0. (12)

From egs.(10), (11) and (12), we obtain E and H that solve egs.(6) and (7), respectively.
If we use cylindrical coordinates and let n° = z °, where z ° is a unit vector along

the 2 axis, from egs.(10) and (11) we get

10?0 o*e
E = _“‘(’?ataqsr +M0%¢ (13)

and

2P 1 9%d 20 1 0%®
s, . s, & <a s, )zo (14)

= 902 ' 70g0z 92 ZF o
respectively, where @ is a solution to the free scalar wave equation (obtained directly

from eq.(12)),

> 1PN\ _
(V 290 ® =0, (15)
and where r ° and ¢° are the unit vectors along the variables, » and ¢, respectively.

From eq.(15), egs.(6) and (7) can be solved.

D. Limited Diffraction Solutions to Maxwell Equations
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Equation (6) or (7) can either be solved approximately by treating each component
of the vectors independently, or by using the Hertz vector potential. However, the
solutions are not necessarily limited diffraction. In the following, we will show how

to obtain limited diffraction solutions.

From egs.(10) and (11), we see that E and H are related to ® by derivatives of
its variables, r, ¢, z, and t, respectively. This means that if ® is a limited diffraction
solution to eq.(15), the solution to the Maxwell wave equations is also limited diffrac-
tion. This is because the derivatives with respect to the variables do not change the
propagation term, z — c1t.[4] If the scalar method is used, it is straightforward to obtain
limited diffraction solutions because each scalar component of E or H satisfies the
same equation as ¢ (egs.(8) and (9)). Because of this, numerous limited diffraction
(relativistic) electromagnetic waves can be obtained from the scalar limited diffraction
(non-relativistic) beams studied in acousticg[4].

Families of generalized solutions of eg.(15) were discovered recently[36]. One of

the families of solutions is given by[36]:

(o0} 1 ™
Oc(s) = [ T(k) [W A(@)f(sma] dk, (16)
[ ]
where
s = ag(k,)rcos (¢ —0) + bk, )|z £ c1(k, ()], (a7
and where
e1(k, Q) = ey/1 + ook, ) b(k, O], (18)

T(k) is any complex function (well behaved) of &£ and could include the temporal

frequency transfer function of a practical acoustic transducer or electromagnetic antenna,
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A(#) isany complex function (well behaved) of § and represents a weighting function of
the integration with respect to ¢, quantity f(s) is any complex function (well behaved)
of s, ag(k, () and b(k, () are any complex function of & and ¢, ¢ is the speed of sound
or light in eg.(15), £ and ¢ are variables that are independent of the spatial position,
r = (rcos¢, rsing, z), and time, ¢, and ¢ is an Axicon angle (0 < ¢ < 7/2)[36].

If c¢1(k,¢) in eq.(18) is real, “+” in eq.(17) represent forward and backward
propagating waves, respectively (in the following analysis, we consider only the forward
propagating waves and all results will be the same for the backward propagating waves).
Furthermore, ®.(s) will represent a family of limited diffraction waves if ci(k. () is
independent of % (containing the same propagation terms, =z — ¢1(()t, for al frequency
components, k).

It must be noticed that ®¢(s) in eq.(16) is very general. It contains some of
the limited diffraction solutions known previously, such as. the plane wave, Durnin’s
limited diffraction beams and the limited diffraction portion of the Axicon beam, in

addition to an infinity of new beams[36].

1. — ELECTROMAGNETIC X-SHAPED WAVES

In this Section, we will derive novel limited diffraction electromagnetic X-shaped

waves from eq.(16) by the Hertz vector potential, =,, = &z °, and by egs.(13) and (14).

A. X-Shaped Wave Solutions
Let T(k) = B(k)e=™k, A(0) = i"e™?, ag(k,() = —iksin(, b(k,() = ikcos(,
and f(s) = e* in eq.(16); we obtain an nth-order scalar limited diffraction X wave that
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has an “X-like” shape in a plane passing through the propagation axis (r — z plane)[36],
Ox (7, ¢,z — c1t)

= einé/B(k)Jn(krsm (e klao—icosCz=eilgp — (n =0, 1, 2, ...),
0
where B(k) is any function (well behaved) of & and represents a transfer function of an

(19)

acoustic transducer or electromagnetic antenna, J,,(-) is the nth-order Bessel function
of the first kind, ¢; = ¢/cos(, k = w/c, w is the angular frequency, ag > 0 and
0 < ¢ < /2 are constants.

If B(k) = ag, from eg.(19) we have the nth-order broadband X wave[36],
ao(rsin ¢)"e"?
VM (7 + VM)’

where the subscript “BB” means “broadband,” and M = (rsin¢)® + 72, and where

®xpB, (7, ¢,z —c1t) = (n=0,1,2, ..), (20)

T = ag — icos((z — c1t).
If B(k) isaband-limited function, we obtain an nth-order band-limited X wave that
is a convolution of functions 7' [B(%)]/a, and ®xpg, (r, ¢. 2 — c1t) with respect to

time, t: [36]

1
(I)XBLn(T,¢,Z —cit) = —fﬁl[B(%>:| * DxpB, , (72, =0,1, 2, ) (21)

aq

where F~1 represents the inverse Fourier transform, = denotes the convolution, and
subscript “BL” means “band-limited”.
Substituting eg.(20) into egs.(13) and (14), one obtains an nth-order broadband

limited diffraction electromagnetic X wave:

niuopc
(ExBB,), = — T/JI\; (T +nv M)q)XBBna (22)

e
Expp ). = ~X&
(ExBB.)s 7 PxB.

T4+ , 72 sin? (23)
.{#rzsinz C+ n(T +n\/M) [\/ﬁgT h \jﬂ> - 1} }»




Hypp), = — 2R \

(HxBB,), /Loc( XBB, )4 (24)
cos

H = E

(HxBB,), /Loc( XBB, ), (25)

sin? ¢

(Hxpp,), = Mz [(n2 — 1)M + 37 (7’ + n\/M)]q’XBBn« (26)

(n=0,1,2, --).
BecauseMaxwell equationsare linear, both real andimaginarypartsof their solutions

are also solutions. In the following, we considerthe real part only.

B. Poynting Flux and Energy Density
From egs.(22)-(26),one obtains the Poynting flux, Pxpp, = Re{ExpsB,} X
Re{HXBBn}~ andtheenegy density,UXBBn = €0|R€{EXBB,,}|2+N0|R6{HXBBH}|2w

of the nth-orderlimited diffraction electromagneticX waves:

(PxBB, ), = Re{(EXBBn>@}R€{(HXBBH):}~ (27)
(PxBB.)s = —Re{(ExsB, ), } Re{(HxBB, ).} (28)
(PxBB,), = C;scc [|R€{(EX'BBH)T}|2 + )Re{(EXBBn)¢H2]= (29)

and

Uxsg, = € (1 + cos® () [IRe{(l‘DXBBn)T}|2 + ’Re{(EXBB">¢HQ] (30)

+uo|Re{(Hxgg, ).} (n=0,1,2, ..).
The total enegy of the nth-orderlimited diffraction electromagneticX wavesis

given by
. = [ as [ 0 [rirvom. o
—r —00 0
(n=0,1,2,..),

which is infinite becausehe decayof the enegy densityalongthe X branches[4,36]

approaches$/|z — —-t|. Neverthelesdjmited diffraction X waveshavea finite enegy

cos
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densityandcanbe approximatelyproducedwith a finite apertureandenegy overlarge

distanceof interest(large depth of field)[37].

C. An Example

In the following, we give an exampleof electromagneticX-shapedwave. For
simplicity, only the zerd"-order (n = 0) X waveis considered.Notice that for n = 0,
egs.(20)-(26)are axially symmetric(not a function of ¢), and (Exss, ), (HxBB, )4

and (Pxgg, ), are zero.

The real part of the zerd"-order scalarHertz potential (eq.(20)) and the electro-
magneticX waves(eqgs.(23),(24and (26)) are shownin Fig.1. The Poyntingflux and
enegy densityareshownin Fig.2. Theirmaximaandminimaaresummarizedn Tables
| andll, respectively.From Tablel, we seethat, with the parametergivenin Fig.1,
the electromagnetiX wavesarealmosttransversavaveswheretheir axial components
aremuchsmallerthanthoseof the transverse&eomponentsThis is alsoshownin Table
Il where the axial componentof the Poyntingflux is at leastfour orderslarger than
its lateralcomponents.Lateralline plots of Figs.1and2 along X branchesare shown

in Fig.3.

IV. — FINITE APERTURE APPROXIMATION

OF X-SHAPED WAVES AND DEPTH OF FIELD

Limited diffraction electromagneticX wavesobtainedfrom eqgs.(10)and (11) are
exactsolutionsto the free-spaceMaxwell wave equations. In theseequationsthere

are no boundaryconditionsand thus the aperturesequiredto producethe wavesare
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infinite; in addition, the waves have an infinite total energy (eg.(31)); therefore, they
cannot be realized with physical devices. However, these waves can be approximated
very well over alarge depth of field by truncating them in both space and time[36,37].
It is important to notice that the peaks of the truncated X waves move (Superluminally
and) almost rigidly along their motion direction over a large depth of interest, without

any further support from the antenna.

Because |[Expp, (7, ¢, z — c1t)| << |ExpB, (7, ¢)| and |Hxpp, (7, ¢,z — c1t)| <<
|Hxgs, (7, ¢)| for |z —cit] > d./2 within a finite transverse aperture, where d.
is a constant, X waves can be truncated within an axially moving “window”,
[c1t —d./2, et +d./2]. The truncated waves do not meet the problems of the theo-
retical (infinitely extended) ones; for instance, at the aperture surface (» = 0) one can

aways set a new time frame ¢ =t + (d./2)/c; that starts from ¢’ = 0.

If the diameter of the aperture is D, the depth of field (defined as the maximum
axial distance within which the decrease of the wave magnitude is less than 6-dB with
respect to their peak at the aperture surface) of the X wave Hertz potential (egs.(20)

and (21)) is given by[4,6,26,36]

= D cot (. (32
ey 2 2
(%) -1
Because the derivatives in egs.(10) and (11) do not change the Axicon angle, ¢, the
depth of field of the electromagnetic X waves produced by the same aperture are the
same as that of the Hertz potential. In addition, eg.(32) is aso valid for band-limited
electromagnetic X waveg4,31]. As an example, if the diameter of the aperture is 20 m
and the Axicon angle, ¢, is0.005°, the depth of field of both broadband and band-limited

electromagnetic X waves is 115 km. Simulation[36] of a finite aperture X wave Hertz
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potential with the Rayleigh-Sommerfeld diffraction formula[46] and its production[37]

with an acoustic transducer have been reported in our previous papers.
V. — X WAVE SOLUTIONS TO THE FREE SCHROEDINGER EQUATION

In addition to Maxwell equations, there are limited diffraction solutions also —for
instance— to the Schroedinger wave equation. These solutions are localized and particle
like. They may very well be related to the wave nature of quantum particles (cf. also
[47]).

The general non-relativistic, time-dependent, and three-dimensional Schroedinger

wave equation is given by [48]
R _, oL

where s = h/2m, h isthe Planck constant, m isthe mass of the particle, ® = ®(r, ¢, z, t)
is a wave function, and V' = V(r, ¢, z,t) is the potential. For free objects, when

= 0, we have

B _, 0D

It is easy to prove that if f(s) = e*, eq.(16) is an exact solution to eq.(34), where
s =ag(k,()rcos(¢p —0) +b(k,()[z — c1(k. )t], (35)

and where

Rlod(k. ¢) +b%(k, )]

er(k, ) = i2mb(k, ¢) (36)

ag(k, ) and b(k, ¢) in eq.(36) are any functions of the free parameters & and ¢, where

we assume that &£ = 27/ is wave number and \ is wavelength. Let
ag(k,() = —iksin ¢ (37

13



and

b(k,() = ikcos(, (38)
from eq.(36) we obtain
hk
ik, Q) = 2m cos (39

From the de Broglie assumption[48], hk = h/A = p where p = mv is the momentum

and v is the speed of particle, eq.(39) becomes

c1(k, ) =

QCOSC'

Substituting egs.(37), (38) and (40) into eq.(35), and using f(s) = e, T(k) =
B(k)e~®F and A(0) = "¢’ in eq.(16), we obtain an nth-order limited diffraction X

wave solution to the Schroedinger wave equation (34)

Py = ew/B Jn(krsin()e” Klao—icos¢(= ZCZsct)]dL 1)
0

(n=0,1,2, .),
where the superscript “s” means “ Schroedinger”. Similarly, egs.(20) and (21) are exact
nth-order broadband and band-limited limited diffraction X wave solutions also to the

Schroedinger wave equation, respectively, after replacing ¢ with v/2:

s ag(rsin ()"0

XBB, — \/W(Ts +\/W>n , (n=0,1,2,.), (42)
and
%BL, = %]—"_1[3(%)] «D%pp., (n=0,1,2,..), 43)

where M* = (rsin C)z + (75)2 and 7% = ag — icosC(z — zcg—sgt> This means that

®% is anew wave function for a free object. In a confined space (as in the case of
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a free particle passing through a hole of finite aperture), the wave function ®% ~ will
change (spread or diffract) beyond a certain distance after the hole.
If ( =0, ap =0, and B(k') = 6(k' — k), where §(-) is a delta-function, eq.(41)

represents a plane wave propagating in the 2 direction
oY = pilkz—k%t) (44)

Since we are here interested in nonrelativistic free particles, their energy, £ = hw, is

the same as the kinetic energy[48], i.e.,

1
E= 5777,1)2 : (45)

With eq.(45) and the momentum, p = hk, we have

k

(46)

|

v
2
Substituting eq.(46) into eq.(44), we have the conventiona plane wave expression for

nonrelativistic free particles traveling in the z direction[48]

Because ¢1 = 557, the X waves in eq.(41) could either be slower (cos¢ > 1/2)
or faster (cos ¢ < 1/2) than the particle speed, v. For a plane wave (( = 0), c1 = §
(see eq.(44)). More interesting would be the relativistic case (of Klein-Gordon and
Dirac equations).

It might be surprising that solutions of a relativistic, classical equation can be
solutions aso of a nonrelativistic, quantum equation. However, it is a well-known fact

that in the time-independent case the Helmholtz equation and the Schroedinger equation

are formally identical[49] (one important consequence of it being that evanescent wave
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transmissiorsimulateselectrontunnelling). In the time-dependentase,suchequations
becomeactually different, but neverthelessstrict relations still hold betweensome

solutionsof theirs, asit will be explicitly shownelsewhere.

VI. — DISCUSSION

A. - X Wave Hertz Potential

The scalarX-shapedwaves,® xgg,, in €q.(20) satisfiesthe wave equation(15).
It is the componentof a Hertz vector potentialin the z direction. If n = 0, quantity
dypp, Is axially symmetricand hasa single peakat the wave center. For n > 0, it
is zeroon the z axis andis axially asymmetric. Whenboth»n and( arezero,®xpp,
represents planewave. In this case,.FE and H derivedfrom eqs.(10)and(11) should
be zero. The Hertz potential,® xgg,, , which may or may not havea physicalmeaning,
is usedas an auxiliary function from which new electromagneticX waves(egs.(13)

and (14)) are derived.

If ®xpp, IS treatedapproximatelyas one componentof E or of H in egs.(6)or
(7), respectively,it hasa physicalmeaning. Many microwaveand optical phenomena
aretreatedthis way undersuitableconditions[46].A J, Besselbeam(a specialcaseof
X waves[36])that was treatedas one componentof the electricfield strengthof light
was producedby Durnin in an optical experiment[3].In acoustics®xpp, represents
acousticpressureor velocity potential[50,51],and has beenapproximatedby a finite

apertureacoustictransducer[37pver a large depth of field.

B. - Nth-order Electromagnetic X Wave
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From the Hertz potentia, E,, = ®z °, and egs.(10) and (11), a family of
electromagnetic X waves can be obtained (egs.(22)-(26)). The nonnegative integer
n represents in these equations the order of the waves. Because the variable ¢ appears
in ®xpp, only, E and H have the same axial symmetry as ®xpp,. However, for
n =1, E and H are not zero on the axis, z, and they are not axially symmetric. This
means they are not single-valued on the z axis and thus cannot be approximated with
a physical device.

For some components of the electromagnetic X waves the field on the axia axis,
z, Is zero. In such a case, there are multiple peaks around the X wave center, and the
energy density is high on these peaks. For example, the energy density of the zeroth-
order electromagnetic X wave has four sharp peaks (see Panel (3) of Fig.2). Thisis
similar to the case of Ziolkowski’s localized electromagnetic wave[20]. Notice that any
higher-order (n > 0) scalar X-shaped waves are zero on the z axis and also produce

multiple peaks[36].

C. - Other Hertz \ector Potentials

If we choose
B, = 0¢° (48)
egs.(13) and (14) are replaced by
2?0 100 0°® .
E=mga" _“‘0<FE+ 8r@t)z (49)
and
1/100 0’0 1 (0?® 1 9% 1 0’®
H — = 0 Il el (I) = 0 - 0
7'<7‘ 0¢p * araqﬁ)T * {7‘2 (8(/)2 * > c? Ot? ](ZS * Tazad)z - (50
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respectively. Substituting the X wave solutions (eg.(20)) into egs.(49) and (50), we
obtain limited diffraction electromagnetic X waves whose electric components stay in

a radia plane (r — z plane).

Similarly, if
En.=®r° (51)
FE and H are given by
and
(e S0 () (L e

respectively. If & are X wave solutions (eq.(20)), equations (52) and (53) represent
limited diffraction electromagnetic X waves with their electric components perpendicular
tor °.

For lower-order ® xpp, (smaler n), E or H in egs.(49)-(50) or egs.(52)-(53) may

be singular around the axial axis because of the terms 1/r and 1/r2.

D. - Limited Diffraction and Wave Speed

Because E or H in egs.(13)-(14), (49)-(50), or (52)-(53) are obtained by derivatives
of the scalar X waves in terms of their spatial and time variables, the propagation term,
z —c1t, isretained after the derivatives. Therefore, the electromagnetic X-shaped waves
are also limited diffraction beams (traveling with the wave at speed ¢, one will see a

constant wave pattern in space).
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The wave speed, c¢q, of limited diffraction beams (eq.(1)) along the 2 axis is
greater than or equa to the speed of sound (in acoustics) or the speed of light (in
electromagnetism or optics). For example, the speed of the X-shaped waves i 36]
c1 =c/cos( > ¢, where (0 < ( < /2 isan Axicon angle[52]. This behavior is said to
be “tachyonic” or Superluminal[53] and has been studied by many investigators in both
“particle’[54-57] and wave [54,55,57,40-42,36] physics. In particular, recently (see
e.g. refs[40,41]) it has been claimed that all relativistic (homogeneous) wave equations
admit also sub- and Super-lumina solutions: a claim later confirmed, e.g., in [57] (and

that in the past had been verified only in some particular caseg54]).

Although the theoretical Superluminal waves encountered in this paper cannot
be exactly produced, due to their infinite energy, they can be approximated with a
finite aperture radiator and retain the essential characteristics (limited diffraction and
Superluminal group velocity) over alarge depth of field[36]. Each component (wavelet)
of the approximated wave propagates at the speed of sound or of light, but the cone,
or X-shaped wave, created by their superposition travels at a speed greater than the
sound or light speed. The X waves, however, do not appear to violate] 36,37,54,55] the
specia theory of relativity, as we shall discuss below in Section VII, when we shall
also show that Superluminal X-shaped waves, in particular, are predicted by Relativity

itself[53,54] to travel in space rigidly, without deforming.

Since Superluminal motions seem to appear even in other sectors of experimental
science, we deem it proper to present in an Appendix at the end of this paper some
information about those experimental results. In fact, the subject of Superluminal objects
[or tachyons] addressed in this paper is still unconventional, and it can get more support

from experiments than from theory. Moreover, such pieces of information are presently

19



scattered in four different areas of science, and it can be useful to find them all collected

in one and the same place.

E. - Electric and Magnetic Field Strength \Vectors

For the electromagnetic X waves given by eqs.(22)-(26), (Exss,.)s/(Exss, ), Of
(Hxgg,),/(Hxss,), is not a function of r and ¢. In addition, the = component of
H is very small as compared to the other two components (see Table I). This means
that the major component of the Poynting flux (egs.(27)-(29)) is in the z direction (the

direction of the vector Hertz potential) (see Table II).

F. - Method to Obtain Other Limited Diffraction Electromagnetic Waves

It is clear from equations (13)-(14), (49)-(50), or (52)-(53), that when new limited
diffraction solutions to eq.(15) are found, the corresponding limited diffraction electro-
magnetic waves can be obtained. There are many ways to obtain new limited diffraction
solutions to the scalar wave equation, such as the variable substitution method, that con-
verts any existing solutions to a limited diffraction solution[24]; and the superposition
method, that uses Bessel beams or rather X waves as basis functions to construct limited

diffraction beams of practical usefulnesy6,26].

G. - Bowtie X Waves for Sdelobe Reduction

Sidelobes of the scalar X-shaped waves (eq.(19)) are high along the X brancheg[4].
The asymptotic behavior of the electromagnetic X wave sidelobes are similar to that
of the scalar waves (see Figs.1 and 2). Low sidelobes are necessary to obtain high

contrast medical imaging where the biological soft tissues are modeled as multiple
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random scatterers51]. To reduce sidelobes of the scalar X waves in pulse-echo
imaging, a summation-subtraction method[31] can be used. However, this method
reduces the frame rate in real-time pulse-echo imaging, and is also sensitive to object
motion. Recently, unsymmetrical limited diffraction beams such as bowtie X waves
were developed[4]. These waves are obtained by taking derivatives in one direction,
say y, of the zeroth-order X wave. When a bowtie X wave is used to transmit and its
90° rotated beam pattern (around the z axis) is used to receive, sidelobes of pulse-echo
imaging systems can be reduced dramatically without compromising the image frame
rate. The same technique could aso be applied to the electromagnetic X-shaped waves

for low sidelobe imaging.

H. - Total Energy, Energy Density, and Causality

Because of the slow decay of the field along the X branches, the total energy
(eg.(31)) of the abovementioned el ectromagnetic X-shaped wavesisinfinite. In addition,
such waves should already exist at t = —oo, due to the infinite extension of the X
arms. Therefore, theoretical (infinitely extended) electromagnetic X waves are not
experimentally realizable. However, because the energy density of the electromagnetic
X wavesis everywhere finite (except for those discussed in subsection C of this Section),
these waves can be approximated very well over a large depth of interest (depth of field)
by truncating them in both aperture (transverse plane) and axial range[36,37,58]. The

truncated waves are “causal”, in the sense that they do not meet the above problems.

|. - Possible Applications
Because limited diffraction electromagnetic waves can be approximated over a
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large depth of field with a zero diffraction angle, they could have applications in

acousticg[4-17], electromagnetism[18-20], and opticg[2,3,21].

J. - Particle Like Character

Limited diffraction X waves (eq.(19) and (41)) are particle like. As the scaling
parameter, ag, decreases, the wave-function energy density around the wave center
increases. The off-center energy density of the X-shaped waves decays slowly aong
the X branches, which may provide away to communicate with other wave particles[58].
Let us aso notice that the X-shaped waves considered by us are not normalizable, like

the plane wave solution[48] to the free Schroedinger equation.

VIl. — A THEORETICAL FRAMEWORK WITHIN

SPECIAL RELATIVITY FOR THE “X-WAVES’

Let us here mention that a simple theoretical framework exists[54] (merely based
on the space-time geometrical methods of Specia Relativity (SR)) which incorporates

the Superluminal X-shaped waves without violating the Relativity principles.

Actually, SR can be derived from postulating: (i) the Principle of relativity; and (ii)
space-time to be homogeneous and space isotropic. It follows that one and only one
invariant speed exists;, and experience shows that invariant speed to be the one, c, of
light in vacuum (the essential role of c in SR is just due to its invariance, and not to its
being supposedly a maximal, or minimal, speed; no other, sub- or Super-luminal, object
can be endowed with an invariant speed: in other words, no bradyon or tachyon can play

in SR the same essentia role as the speed-c light waves). Let us recall, incidentally,
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that tachyon [a term coined in 1967 by G.Feinberg] and bradyon [term coined in 1970
by one of the present authors] mean Superluminal and subluminal object, respectively.
The speed c turns out to be a limiting speed: but any limit possesses two sides, and
can be approached a priori both from below and from above (as E.C.G.Sudarshan put
it, from the fact that no one could climb over the Himalayas ranges, people of India
cannot conclude that there are no people North of the Himalayas...; actualy, speed-c
photons exist, which are born, live and die just “at the top of the mountain,” without

any need to accelerate from rest to the light speed).

A consequence is that the quadratic form ds? = ¢2dt?> — dz? — dy® — d2* (i.e., the
four-dimensional length-element square, along the space-time path of any object) results
to be invariant, except for its sign. In correspondence with the positive (negative) sign,
one gets the subluminal (Superluminal) Lorentz transformations [LT]. The ordinary,
subluminal LTs leave, e.g., the fourvector squares and the scalar products (between

fourvectors) just invariant.

The Superluminal LTs can be easily written down only in two dimensions (or in six,
or in eight, dimensions...). But they must have the properties of changing sign, e.g., to
the fourvector squares and to the fourvector scalar products. This is enough to deduce
—see Fig.4— that a particle, which is spherical when at rest (and which appears then as
ellipsoidal, due to Lorentz contraction, at subluminal speedsv), will appear[53,54,58,59]
as occupying the cylindrically symmetrical region bounded by a two-sheeted rotation
hyperboloid and an indefinite double cone, as in Fig.4(d), for Superluminal speeds V.
In Fig.4 the motion is along the x-axis. In the limiting case of a point-like particle, one
obtains only a double cone. In 1982, therefore, it was predicted[53] that the simplest

Superluminal object appears (not as a particle, but as a field or rather) as a wave:
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namely, as a “X-shaped wave’, the cone semi-angle « being given (with ¢ = 1) by
cota = VV2 -1

It was also predicted[53,59] that the X-shaped waves would move rigidly with
speed V aong their motion direction (Fig.5). The reason for such “X-waves’ to travel
undeformed is quite simple: every X-wave can be regarded at each instant of time as
the (Superluminal) Lorentz transform of a spherical object, which of course as time

elapses moves in vacuum without any deformation.

The X-shaped waves here considered are the most simple ones only. If we started
not from an intrinsically spherica or point-like object, but from a non-spherically
symmetric particle, or from a pulsating (contracting and dilating) sphere, or from a
particle oscillating back and forth along the motion direction, their Superluminal Lorentz
transforms would result to be more and more complicated. The above-seen X-waves,
however, are typical for a Superlumina object, so as the spherical or point-like shape

is typical for a subluminal particle.

The three dimensional picture of Fig.5, or rather of Fig.4(d), appearsin Fig.6, where

its annular intersections with a transverse plane are shown (cf. refs.[53,59]).

It has been believed for a long time that Superluminal objects would have allowed
sending information into the past; but such problems with causality seem to be solvable
within SR. Once SR is generalized in order to include tachyons, no signa traveling
backwards in time is apparently left. For a solution of those causal paradoxes, see

refs.[55,56] and references therein.

Let us pass, within this elementary context, to the problem of producing a “X-
shaped wave’ like the one depicted in Fig.6 (truncated of course, in space and in time,

by use of a finite antenna radiating for a finite time interval). To convince ourselves
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about the possibility of realizing them, it is enough to consider naively the ideal case of
a Superluminal source S of negligible size, endowed with constant speed V and emitting
spherical electromagnetic waves W (each one traveling at the invariant speed c). We
shall observe the el ectromagnetic waves to be internally tangent to an enveloping cone C
having the source motion line x as its axis and Sas its vertex. Thisis analogous to what
happens with an airplane moving with a constant supersonic speed in the air. 1n addition,
those electromagnetic waves W interfere negatively one another inside the cone C, and
interfere constructively only on its surface. We can put a plane detector orthogonal to x
and record the intensity of the waves W impinging on it, as a (cylindrically symmetric)
function of position and of time. Afterwards, it will be enough to replace the plane
detector by a plane antenna that radiates —instead of detecting and recording— exactly
the same (cylindrically symmetrical) space-time pattern of electromagnetic waves W, in
order to build up a cone-shaped (C) electromagnetic wave travelling along x with the
Superluminal speed V (obviously, with no radiating source —now— any longer at its

vertex S). Even if each spherical wave W will still travel with the invariant speed c.

Incidentally, by evaluation of the above-mentioned intensity, one can get the

simplest example of “X-waxe solution.”

Let us recall by the way that, in the approximated case in which we produce a
finite conic wave truncated both in space and in time, the theory of SR suggested the
bi-conic shape (symmetrical in space with respect to the vertex S) to be a priori a better
approximation to a rigidly traveling wave; so that SR suggests to have recourse to
an antenna emitting a radiation (not only cylindrically symmetrical in space but also)
symmetric in time, in order to obtain a priori a better approximation to an undeformed

progressive wave.
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Let us mention moreover that our finite bi-conic, or X-shaped, waves (after having
been produced) are expected to travel amost rigidly, at Superluminal speed, without
any further support from the radiator.

One may observe, at last, that in the vacuum and in nondispersive media for our

X-shaped waves the group velocity coincides with the phase velocity.

VIIl. — CONCLUSION

We have derived limited diffraction solutions to the free Maxwell equations. Theo-
retically, these solutions are diffraction-free. They are infinitely extended in space and
time, and possess infinite total energy. However, for solutions that are single valued and
non-singular (finite energy density), they can be approximated very well by afinite aper-
ture antenna over a large depth of interest. In addition, some X-shaped wave solutions
to the free Schroedinger equation are derived; which may be helpful for a better under-
standing of the relationship between waves and particles. Because limited diffraction
beams have a large depth of field, they could have applications in several areas.

As explained in Sect.VI-D above, we use the present occasion to present in the
Appendix below some information about the other sectors of experimental science in

which Superluminal motions seem to appear.
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X. — APPENDIX

In this Appendix we take the opportunity to present some sketchy information
—mainly bibliographical— about the other three (in total, four) sectors of experimental
science in which Superluminal motions seem to appear. In fact, as the “ Superluminal”
topic is till controversial, a panoramic view of the overall experimental situation is
certainly useful, especialy when it is considered that the related information, scattered

in very different Journals, is not all of easy access to everybody.

For the sake of brevity, in the references quoted in this Appendix the title of the

papers will be omitted.

The question of Superluminal objects or waves [tachyons] has a long story, starting
perhaps with Lucretius De Rerum Natura. Still in pre-relativistic times, let us recall
e.g. the contributions by A.Sommerfeld. In relativistic times, our problem started
to be tackled again essentialy in the fifties and sixties, in particular after the papers

by E.C.George Sudarshan et a., and later on by E.Recami, R.Mignani et al. [who
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by their numerous works at the beginning of the seventies rendered, by the way, the
terms sub- and Super-luminal of popular usg], as well as by H.C.Corben and others (to
confine ourselves to the theoretical researches). For references, one can check pages
162-178 in ref.[54], where about 600 citations are listed; or the large bibliographies by
V.F.Perepelitsa[60] and the book in ref.[61]. In particular, for the causality problems one
can see refs.[55,56] and references therein, while for a model theory for tachyons in
two dimensions one can be addressed to refs.[54,62]. The first experiments looking
for tachyons were performed by T.Alvager et al.; some citations about the early

experimental quest for Superluminal objects being found e.g. in refs[1,63].

The subject of tachyons is presently returning after fashion, especialy because of
the fact that four different experimental sectors of physics seem to indicate the existence
of Superluminal objects: including —of course— the one dealt with in this and in other
papers of ours, which seems to us as being at the moment the most important sector.
Let us put forth in the following some brief information about the experimental results

obtained in such different science areas.

First: Negative Mass-Square Neutrinos

Since 1971 it was known that the experimental square-mass of muon-neutrinos re-
sulted to be negative[64]. If confirmed, thiswould correspond (within the ordinary naive
approach to relativistic particles) to an imaginary mass and therefore to a Superluminal
speed; in a non-naive approach[54], i.e. within a Specia Relativity theory extended
to include tachyons (Extended Relativity), the free tachyon “dispersion relation” (with

¢ = 1) becomes E? — p? = —m2.

From the theoretical point of view, let us refer to [65] and references therein.
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Recent experiments showed that also electron-neutrinos result to have negative

mass-square] 66] .

Second: Galactic “ Mini-Quasars’

We refer ourselves to the apparent Superluminal expansions observed inside quasars,
some galaxies, and —as discovered very recently— in some galactic objects, prelim-
inarily called “mini-quasars’. Since 1971 in many quasars (and even a few galaxies)
apparent Superluminal expansions were observed [Nature, for instance, dedicated to
those observations a couple of its covers]. Such seemingly Superluminal expansions
were the consequence of the experimentally measured angular separation rates, once it
was taken into account the (large) distance of the sources from the Earth. From the
experimental point of view, it will be enough to quote the book [67] and references

therain.

The distance of those “Superlumina sources’, however, it is not well known; or,
at least, the (large) distances usually adopted have been strongly criticized by H.Arp et
a., who maintain that quasars are much nearer objects than expected: so that al the
above-mentioned data can no longer be easily used to infer (apparent) Superluminal
motions. However, very recently, galactic objects have been discovered, in which
apparent Superlumina expansions occur; and the distance of galactic objects can be
more precisely determined. From the experimental point of view, see in fact the papers

[68].

From the theoretical point of view, both for quasars and “mini-quasars’, see [69,54].
In particular, let us recall that a single Superluminal source of light would be observed:

(i) initialy, in the phase of “optic boom” (analogous to the acoustic “boom” by an
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aircraft that travels with constant super-sonic speed) as a suddenly-appearing, intense
source; (ii) later on, as a source which splits into TWO objects receding one from the

other with relative velocity V larger than 2c.

Third: Tunnelling photons = Evanescent waves

It is the sector that most attracted the attention of the scientific and non-scientific
press[70].

Evanescent waves were predicted [cf., e.q., ref.[54], page 158 and references
therein] to be faster-than-light. Even more, they consist in tunnelling photons: and
it was known since long time[71] that tunnelling particles (wave packets) can move
with Superluminal group velocities inside the barrier; therefore, due to the theoretical
analogies between tunnelling particles (e.g., electrons) and tunnelling photong49], it

was since long expected that evanescent waves could be Superluminal.

The first experiments have been performed at Cologne, Germany, by Guenter Nimtz

et a., and published in 1992. See refs.[72].
Other very famous experiments have been performed at Berkeley: see refs[73].

Further experiments on Superluminal evanescent waves have been done at Flo-

rence[ 74]; while a last experiment (as far as we know) took place at Vienng[74].

From the theoretical point of view, see [71] and references therein; and [75].

Fourth: Superluminal motions in Electrical and Acoustical Engineering — The “ X-

shaped waves’
This fourth sector, which this paper is contributing to, seems to be at the moment
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(together with the third one) the most promising.

Starting with the pioneering work by H.Bateman, it became slowly known that all
the relativistic homogeneous wave equations —in a general sense: scalar, electromag-
netic and spinor— admit solutions with subluminal group velocities 76]. More recently,
also Superluminal solutions have been constructed for those homogeneous wave equa-
tions, in refs[77,57] and quite independently in refs[40-42]: in some cases just by
applying a Superluminal Lorentz “transformation”[54,62]. It has been also shown that
an analogous situation is met even for acoustic waves, with the existence in this case
of “sub-sonic” and “ Super-sonic” solutiong 10,36]; so that one can expect they to exist,
e.g., aso for seismic wave equations. More intriguingly, we may expect the same to
be true in the case of gravitational waves too.

Let usrecall that the rigidly traveling Supersonic and Superluminal solutions found
in refs[36,37] and in this paper —some of them aready experimentally realized—
appear to be (generally speaking) X-shaped, just as predicted in 1982 by Barut,
Maccarrone and Recami[53].

On this regard, from the theoretical point of view, let us quote pages 116-117, and
pages 59 (fig.19) and 141 (fig.42), of ref.[54]; and even more refs.[54,58,59], where
“X-shaped waves’ are predicted and discussed. From such papers it is also clear why

the X-shaped waves keeps their form while traveling (nondiffracting waves).
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FIGURE CAPTIONS

Fig.1l. Rea part of Hertz potential and field components of the zeroth-order (n = 0)
limited diffraction electromagnetic X wave at time ¢ = z/c¢;. Panel (1) is Hertz
potential, Re{®xpp,} ; Panel (2) is the ¢ component of electric field strength,
Re{(EXBBO)Q'} ; and Panels (3) and (4) are r and z components of magnetic field
strength, Re{(HxpB,),} and Re{(Hxpp,).}, respectively. The dimension of each
panel is 4 m (r direction) x 2 mm (z direction). The free parameters ( and a( are
0.005° and 0.05 mm, respectively. The values shown on the right-top corner of each

panel represent the maxima and the minima of the images before normalization for

display [MKSA units] (see also Table I).

Fig.2. Poynting flux and energy density of the zeroth-order limited diffraction elec-
tromagnetic X wave at timet = z/c;. Panels (1) and (2) are » and z components of
the Poynting flux, (PxgB,), and (Pxgs,),, respectively; and Panel (3) is the energy
density, Uxpgp,. The dimension of each panel and the parameters of the X waves are
the same as those in Fig.1. The values shown on the right-top corner of each panel
represent the maxima and the minima of the images before normalizing for display

[MKSA units] (see also Table II).

Fig.3. Line plots of the zeroth-order electromagnetic X wave in Figs.1 and 2 aong
one of the “X” branches (from left bottom to top right). Panel (1) shows the line
plots of the field components: Re{®ypp, } (full line), Re{(EXBBO)g.,} (dotted line),

Re{(HXBBo)r} (dashed line), and Re{(HXBBO) } (long dashed line). Panel (2) is

z
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the line plot of the Poynting flux and energy density: (Pxgg, ), (full line), (Pxgg,)

z

(dotted lines), and Uxpp, (dashed line).

Fig.4. Let us consider an object that is intrinsically spherical, i.e., that is a sphere
in its rest-frame (Panel (a)). After a generic subluminal Lorentz transformation (LT)
aong x, i.e., under a subluminal x-boost, it is predicted by special relativity (SR) to
appear as €ellipsoidal due to Lorentz contraction (Panel (b)). After a Superlumina x-
boost (namely, when this object moves with Superluminal speed V), it is predicted
by extended relativity (ER) to appear[53,54] as in Pandl (d), i.e., as occupying the
cylindrically symmetric region bounded by a two-sheeted rotation hyperboloid and an
indefinite double cone. The whole structure is predicted by ER to move rigidly and,
of course, with the speed V, the cone semi-angle cotangent square being (V/c)2 - 1.
Panel (c) refers to the limiting case when the boost-speed tends to c, either from the

left or from the right. (For simplicity, a space axis is skipped).

Fig.5. If we start from a spherical particle as in Fig.4(a), then —after a Superluminal
boost along a generic motion line |,— we obtain the tachyonic object T depicted in
this figure. Once more, the Superluminal object T appears to be spread over the whole
gpatial region delimited by a double cone and a two-sheeted hyperboloid asymptotic to
the cong[59]. The whole structure travels of course along | with the speed V of the
Superluminal 1-boost. Notice that, if the object is not spherical when at rest (but, e.g.,
is elipsoidal in its own rest-frame), then the axis of T will no longer coincide with I,
but its direction will depend on the speed V of the tachyon itself. For the case in which

the space extension of the Superluminal object T is finite, see ref.[58].
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Fig.6. Here we show the intersections of the Superluminal object T with planes P
orthogonal to its motion line z-axis, for the same case as in Fig.4. For simplicity,
we assumed again the object to be spherical in its rest-frame, and the cone vertex to
coincide with the origin O for ¢ = 0. Such intersections evolve in time so that the same
pattern appears on a second plane —shifted by Az after the time At = Az/V. On
each plane, as time elapses, the intersection is therefore predicted by ER to be a circular
ring which, for negative times, goes on shrinking until it reduces to a circle and then to
apoint (for ¢ = 0); afterwards, such a point becomes again a circle and then a circular

ring that goes on broadening[53,54,59,58].



TABLE CAPTIONS

Table I: Maxima and minima of the zeroth-order limited diffraction electromagnetic X

waves (unit: MKSA).

Re{®xpg, } Rc{ (E.YBB0)¢} Re{(Hxss,),}  Re{(HxBp,).}

max 1.0 9.5x 106 2.5%10% 6.1

min 0.0 -9.5% 10° -25%x10% -1.5

Table 11: Maxima and minima of the Poynting flux and energy density of the

zeroth-order limited diffraction electromagnetic X waves (unit: MKSA).

(PxBB,), (PxBB,). UxBB,
max 2.4x 10’ 2.4x 101 1.6x10°
min -2.4x10’ 0.0 0.0
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