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Second-harmonic generation of thenth-order Bessel beam
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We investigate the second-harmonic generation ofitheorder Bessel beam in the nonlinear medium. The
analysis is based on the Khokhlov-Zabolotskaya-Kuznetsov wave equation under the second-order approxima-
tion in nonlinear acoustics. The theory indicates that fon#morder Bessel beam, the second-harmonic beam
is nearly diffraction-free in the radial direction and behaves as a Bessel beam of themrdedzhat the axial
pressure amplitude is proportional to the square root of propagation distance. A variety of applications in many
fields of nonlinear acoustics and nonlinear optics is expected.

PACS numbeps): 42.25—-p, 42.65.Ky

. INTRODUCTION harmonic generation of theth-order Bessel beam in a non-
linear medium. Our theory shows that the second harmonics
The first to discover the Bessel beam solution of the wavef both theJ, beam[13] and theJ,, beam are nearly radially
equation was Strattdri]. Forty-six years later, Durnin redis- limited diffraction. Generally, for a Bessel beam
covered this beam and named it a nondiffractitey  J,(a€&)exp(ng), the nonlinearly generated second-harmonic
diffraction-freg beam[2]. Because all practical beams are beam has the field distributiahy,(2a¢)exp(2n¢). The sec-
subject to diffraction, a new term, “limited diffraction ond harmonic amplitude along the propagation direction of
beams,” is used to avoid the controversy of Durnin’s termi-the beam is approximately proportional to the square root of
nologies[12]. Durninet al. have also verified the theory with the propagation distance,
an optical experiment and pointed out potential applications
of these new beamf2,3]. Since then, Bessel beams and
some of more general limited diffraction beams, suchXas Il. THEORY AND RESULTS

wave beams, have been widely investigated in many fields of We begin our analysis with the linearized and quasilinear

acoustics, optics, and the relevant science of phydied4]. . i i
An nth-order Bessel beam is characterized for all valuess’omtIons of the Khokhlov-Zabolotskaya-Kuznetsg(zK)

of the propagation distanceby a transverse field distribu- €quation in nonlinear acoustidd5-17. [Because of the
. propag ; y . . similarity of the solutions with those in nonlinear optics, the
tion proportional toJ,(«'r) with an azimuthal variation of

: . . nalysis here is al licabl he phase-match n
exp(ng), wherer is the transverse coordinate,” is the analysis here is also applicable to the phase-matched second

harmonic generation of an intense Bedsight) beam in the
transverse wave number of the Bessel beam,Jamdknotes g sdight)

X . . optical-nonlinear mediun. Suppose that a sound source,
the nth-order Bessel function of the first kifé&,11]. These with an angular frequency and a characteristic radius

beams are spec.ial cases of limited diffractiqn beams_given béfscillates harmonically in time. Furthermore, we assume for
Durnin, or solutions to the wave equation in cylindrical co- simplicity that the absorption and dispersion of the medium

grdina;[ebs stud_iec:hin get"?‘" by c?tratfton. In fac;c,l_tm_at—%rddgfrf are ignored 18] and the beam field has the forfhoundary
essel beam IS the basis mode of a general imited di racéonditiorj fa(¢')exping’) on the source. In this case, the

lt!on beam, that '? an af.l’&ltl’aéy I|m||tet;j dlffracEPr?n betgml;s theradial and azimuthal variables in the field integrals are sepa-
inear superposition of the Bessel beafB Theoretically, rable, and the linearized solution for the fundamental pres-

the Bess_el _b?am _has infinite apertl_(lmd energy an_d €an gyre field can be expressed in a complex-valued form:
travel to infinity without any spreading. For a physically re-

alizable system, however, the aperture of a Bessel beam is
always finite. Even so, the beam has a very large depth of q,(&,7,¢)=01(¢, n)exdin(¢+ 7/2)]

field where the beam profile basically remains a Bessel func-

tion distribution. The zeroth-order Bessel beam has been ap- _expfin(d+ m/2)] 2 fw jzw
plied in medical ultrasonic imaging and tissue identification, inle=ole=o0
showing many advantages on improving the quality of image

2 12 ’
[8,9]. It may also have potential applications in harmonic Xexr{i &+¢ J (255 ) f (&) de
imaging which has been recently develogd8,14. In ad- 7 "Wy )" '
dition, the dispersion feature of thly beam has been dem- 1)

onstrated to be applicable in nonlinear optics, where this

beam can be viewed as a light beam with a tunable wave-

length[10]. and the quasilinear solution for the second-harmonic compo-
In this paper, we report a general result on the secondent is

1063-651X/2000/6@)/20384)/$15.00 PRE 61 2038 ©2000 The American Physical Society



PRE 61 SECOND-HARMONIC GENERATION OF THEhTH-ORDER.. . . 2039

o€ m,0)=02(&, n)exdi2n( o+ w/2
A2(& 7, ¢)=0d2(&, m)exdi2n(¢ )] Tl = f J e

=exfi2n(¢+ml2)]5 | 2

f of —om—7n' Xexp(|2§ +¢ )Jzn( age’ ) Pat’)
g2+ ¢ age’\_, m=n a
xXex 2 77_777 J 7]_77/ ql(f 17]) ia277'
><exp(— 5 )dg’dn’. (6)
xd§'dy’, 2

With

where é=r/a and »=2z/ka’ are the radially and axially > (a2
dimensionless coordinates, ake w/c is the wave number Jﬁ(z): —j Jon(2zsin t)dt, 7
at the fundamental frequency. Correspondingly, the notations m™Jo
r and z denote the radial and axial coordinates. Here, the
characteristic amplitudp,, of the fundamental is not written e transform Eq(6) into a triple integral,
out in Eq.(1), nor in Eq.(2) for the second-harmonic ampli- .
tude in terms ofp(z) and the acoustic nonlinearity coefficient (¢, )= _Jn J J .
of the medium. In the derivation of E@2), it has been as- '=0J¢'=0Jt=01"7
sumed that the second harmonic is not generated at the 24 agg
source plane. Equation§l) and (2), where the factors xexp i2 ,>J ( ,)
exp(—i7) and exp(i27) are suppressed ane= wt —kz, may - n—n
be considered as the complex-valued pressure amplitudes in i
dimensionless form for the fundamental and second har- X Jon(2a€’ sint)ex;{——azn’)dg’ dz’ dt.
monic components, respectively. When=0, these two 2
equations are the fundamental and second harmonic field of 8
an axially symmetric sourcil3,17).

We now assume that the sound beam on the source Idsing Eq.(4) again and integrating Eq8) with respect to

given by &', we then have,
fo(€)=dn(at’), 3 Gal &)= 47J _oft 0
ia®
which produces thenth-order Bessel function of the first xexp{ 2 )Jzn(2a§ sint)
kind, wherea= a'a is a scaling parameter df,. According
to Eq. (1) and using the following formula&}) [19]: iy’
xexg — 5 ~cod t|dy’ dt )
wan(at)Jn(ﬁt)eiWtht dt It is easy to carry out the above integral abgitand reduce
0 Eq.(9) to
Tl =— o p( iazn)
i [ 1 A2(&,m)=— zexp —
—xoy Zexg Ty Ao+ pA)| I SaBy 2], @) ema 2
2 4 2 "
XJ Jon (2aésint)
t=0

we obtain thenth-order Bessel fundamental beam,

ia’y
xl—exp{Tcoszt” §tdt (10)

q.(&, ”):J”(O‘f)eXp( - Zazn) . 5 Equation(10) is an exact expression for the second-harmonic
beam ofJ,, under the second-order approximation, and it can
be analytically expressed in terms of generalized hypergeo-

Compared with the original form Ref2], Eq. (5) has an  metric functions and Bessel functiorisee the Appendjx
additional exponential term with an imaginary argument. It iswith the help of a relatively complicated procedure. We pre-
due to the fact that the paraxial approximation has been usddr to apply an alternative approximation, semianalytical but
in the derivation of the integral representati¢fsis.(1) and  much simpler, to show the properties of the second harmonic
(2)] of the field. This approximation is valid in most cases ofbeam given by Eq(10). Before doing so, heuristically we
the propagation of ultrasoun@dnd ligh) beams. present a physical explanation of E4.0), from the view-
Substituting Eq(5) into Eq.(2), we have the second har- point of the angular spectrum. The second harmonic of an
monic of theJ, Bessel beam nth-order Bessel beam may be understood as a linear super-
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position of all the ath-order Bessel beams,,(2a& sint) (iv) The zeroth-order Bessel beam is an extremely special
with the transverse wave number from O te @orrespond- case in all Bessel beams. It has a sharp intensity peak at its
ingly, the limit of integration is from 0 tar/2), and with the ~ center. The second-harmonic component of this beam is also

complex amplitudgor proportional td f(t) of the angular ~a zeroth-order Bessel beam with,2and has exactly one-half

spectrum, where the functioi(t) is given by times the beamwidth of the fundamenfaB]. In most cases
of the conventional beam$ocused or not, ultrasonic or op-
f(t)=[1—expliz; cogt)]/cost, (11)  tical), the beamwidth of the nonlinearly generated second

harmonic is generally ¥2 times that of the fundamental.
with z,=a?7/2. It is easy to show that for a sufficiently This has been experimentally verified and theoretically pre-
large z;, the real and imaginary parts of this function aredicted[20,21.
extremely similar to theS function 6(t — #r/2). This fact im- In addition, it must be emphasized that EG0) and(13)
plies that when the second harmonic of tite-order Bessel are derived under the quasilinear approximation. From the
beam is generated in the far range from the solfroen the  perturbation theory, these solutions are valid when the fol-
following analysis, this range is determined by=2), the  lowing inequality is satisfied:
“component” J,,(2a¢) with the transverse wave number

2a is predominant. The numerical integration of the function 2\"p(ka)® [ug\ ,,
(11) aboutt shows that p o |\ =<C (15
1/2 2 1/2
fﬂlzf(t)dt:(Z) (ﬂ) (1-i) (12  Here,C~0(1), B is the acoustic nonlinear coefficient of
0 2 2 medium,uy is the vibration velocity at the source center, and

Ug/c is the acoustic Mach number.
is a surprisingly good result wheny=2. From the prop-
erty of the 5'function, theJ,, second-harmonic beam is then Il DISCUSSION
well approximated by

- It should also be noted that our present analysis is based
— _ - 2 on the assumption of an infinite aperture. The aperture of
G2&m) == gz, 7 J2n(2a§)exp< 2 77)’ practical Bessellimited diffraction) beams is always finite
(13 and the “Bessel function” characteristic of such beams re-
mains only within the depth of field. However, we may point
in the region of 1/2°7=2m. When generated in the range out that the conclusions here will hold in the case of finite
of 0<3a’n<m/2, extremely close to the source, the aperture, as long as many lobes of the Bessel function are
second-harmonic component has the form contained within the effective aperture of the Bessel beam.
The detailed analysis of this case will be given separately.
Many practical applications of the Bessel beams have
been demonstrated in both acoustic®dical ultrasonic im-
aging and tissue identificatiprand optics(precision align-
Between these two regions, i.e., whef2<3 a?7n<2m, the  men). It may be expected that the higher-order Bessel beams
radial behavior of the second-harmonic component deviateslso have potential applications in nonlinear optics and non-
slightly from the prediction for Eqg13) and(14). Although linear acoustic§7,10]. In particular, we want to point out
differences exist in the latter two ranges, it is reasonable tehat theJ, Bessel beam may be very useful for harmonic
think that Eq.(13) reveals the characteristics of the secondimaging, where both narrow beamwidth and large field depth
harmonic of thel, beam, since the second harmonic associare required not only for the fundamental ultrasonic beam
ated with the Bessel functiod,,(2a¢) is propagated in but also for the nonlinearly generated second-harmonic com-
nearly the entire region of the beam if the assumption ofonent. An extra improvement of imaging resolution may be
infinite apertures is considered. From the above analysis, webtained by using this beam rather than conventional beams
therefore see that the generated second harmonic of an arkis indicated by the propertjv) above.
trary nth-order Bessel beam has the following characteris-

. -
Tl 7)= %J%(aaexp( -5 ”). (14

tics:
. . IV. CONCLUSION
(i) Like the nth-order Bessel fundamental beam, the
second-harmonic beam is also limited diffracti@r more Our theoretical analysis shows that the second harmonic

exactly speaking, nearly radially limited diffractiprand the  of the nth-order Bessel beam is nearly limited diffraction,
pressure amplitude is simply proportional to the squared roolith the Bessel function distribution of the orden 2and the
of the propagation distance. scaling 2Zv, and that the amplitude along the beam axis is
(i) The second-harmonic component of théh-order  simply related to the square root of the propagation distance.
Bessel beam has the Bessel function distribution of the ordeFhis result is not only interesting from a fundamental point
2n, and the corresponding scaling parameter is exactly twicef view, where thenth-order Bessel beam is “basis” modes
that of the Bessel fundamental beam. of the limited diffraction beanti.e., any limited diffraction
(iii ) Thenth-order >0) Bessel fundamental beam has abeams are a linear superposition of the Bessel beams, for
spiral wave front dislocation with polarityat its centef11].  example, X wave beamys[8], it also offers valuable insight
Correspondingly, the second harmonic of this beam is stilinto the study of the nonlinear characteristics of more general
spiral, with polarity 2. limited diffraction beams.
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APPENDIX (A2)

An exact analytical expression of the integral in EX),
denoted byX(&,7), is in terms of generalized hypergeomet- with u=|m-+n| and z=3ia?7. In fact, Eq. (14) corre-
ric functions ;F,: sponds to the term ain=—n in Egs. (Al) and (A2). The
(1)l ahpproximat?afsoluticzmls)‘) cag(bg)arl;alytically hobtained from
= ™ this general form ofAl) and(A2), by using the asymptotic
X(&m)= 2 m;_w Im(@&)Ims2n(@)Fmn(2), expansion of,F, for large argumeniz] and the sum theorem
(A1) of Bessel function$19].
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