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Second-harmonic generation of thenth-order Bessel beam
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We investigate the second-harmonic generation of thenth-order Bessel beam in the nonlinear medium. The
analysis is based on the Khokhlov-Zabolotskaya-Kuznetsov wave equation under the second-order approxima-
tion in nonlinear acoustics. The theory indicates that for annth-order Bessel beam, the second-harmonic beam
is nearly diffraction-free in the radial direction and behaves as a Bessel beam of the order 2n, and that the axial
pressure amplitude is proportional to the square root of propagation distance. A variety of applications in many
fields of nonlinear acoustics and nonlinear optics is expected.

PACS number~s!: 42.25.2p, 42.65.Ky
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I. INTRODUCTION

The first to discover the Bessel beam solution of the w
equation was Stratton@1#. Forty-six years later, Durnin redis
covered this beam and named it a nondiffracting~or
diffraction-free! beam@2#. Because all practical beams a
subject to diffraction, a new term, ‘‘limited diffraction
beams,’’ is used to avoid the controversy of Durnin’s term
nologies@12#. Durninet al.have also verified the theory wit
an optical experiment and pointed out potential applicati
of these new beams@2,3#. Since then, Bessel beams a
some of more general limited diffraction beams, such aX
wave beams, have been widely investigated in many field
acoustics, optics, and the relevant science of physics@4–14#.

An nth-order Bessel beam is characterized for all valu
of the propagation distancez by a transverse field distribu
tion proportional toJn(a8r ) with an azimuthal variation of
exp(inf), where r is the transverse coordinate,a8 is the
transverse wave number of the Bessel beam, andJn denotes
the nth-order Bessel function of the first kind@5,11#. These
beams are special cases of limited diffraction beams given
Durnin, or solutions to the wave equation in cylindrical c
ordinates studied in detail by Stratton. In fact, thenth-order
Bessel beam is the basis mode of a general limited diffr
tion beam, that is, an arbitrary limited diffraction beam is t
linear superposition of the Bessel beams@8#. Theoretically,
the Bessel beam has infinite aperture~and energy!, and can
travel to infinity without any spreading. For a physically r
alizable system, however, the aperture of a Bessel bea
always finite. Even so, the beam has a very large dept
field where the beam profile basically remains a Bessel fu
tion distribution. The zeroth-order Bessel beam has been
plied in medical ultrasonic imaging and tissue identificatio
showing many advantages on improving the quality of ima
@8,9#. It may also have potential applications in harmon
imaging which has been recently developed@13,14#. In ad-
dition, the dispersion feature of theJ0 beam has been dem
onstrated to be applicable in nonlinear optics, where
beam can be viewed as a light beam with a tunable wa
length @10#.

In this paper, we report a general result on the sec
PRE 611063-651X/2000/61~2!/2038~4!/$15.00
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harmonic generation of thenth-order Bessel beam in a non
linear medium. Our theory shows that the second harmo
of both theJ0 beam@13# and theJn beam are nearly radially
limited diffraction. Generally, for a Bessel bea
Jn(aj)exp(inf), the nonlinearly generated second-harmo
beam has the field distributionJ2n(2aj)exp(i2nf). The sec-
ond harmonic amplitude along the propagation direction
the beam is approximately proportional to the square roo
the propagation distance,z.

II. THEORY AND RESULTS

We begin our analysis with the linearized and quasilin
solutions of the Khokhlov-Zabolotskaya-Kuznetsov~KZK !
equation in nonlinear acoustics@15–17#. @Because of the
similarity of the solutions with those in nonlinear optics, th
analysis here is also applicable to the phase-matched se
harmonic generation of an intense Bessel~light! beam in the
optical-nonlinear medium.# Suppose that a sound sourc
with an angular frequencyv and a characteristic radiusa,
oscillates harmonically in time. Furthermore, we assume
simplicity that the absorption and dispersion of the medi
are ignored@18# and the beam field has the form~boundary
condition! f n(j8)exp(inf8) on the source. In this case, th
radial and azimuthal variables in the field integrals are se
rable, and the linearized solution for the fundamental pr
sure field can be expressed in a complex-valued form:

q̄1~j,h,f!5q̄1~j,h!exp@ in~f1p/2!#

5exp@ in~f1p/2!#
2

ih E
j850

` E
f850

2p

3expS i
j21j82

h D Jn S 2jj8

h D f n ~j8!j8 dj8,

~1!

and the quasilinear solution for the second-harmonic com
nent is
2038 ©2000 The American Physical Society
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q̄2~j,h,f!5q̄2~j,h!exp@ i2n~f1p/2!#

5exp@ i2n~f1p/2!#
1

2 Eh850

h E
j850

` j8

h2h8

3expS i2
j21j82

h2h8 D J2n S 4jj8

h2h8D q̄1
2~j8,h8!

3dj8 dh8, ~2!

where j5r /a and h52z/ka2 are the radially and axially
dimensionless coordinates, andk5v/c is the wave number
at the fundamental frequency. Correspondingly, the notat
r and z denote the radial and axial coordinates. Here,
characteristic amplitudep0 of the fundamental is not written
out in Eq.~1!, nor in Eq.~2! for the second-harmonic ampl
tude in terms ofp0

2 and the acoustic nonlinearity coefficie
of the medium. In the derivation of Eq.~2!, it has been as-
sumed that the second harmonic is not generated at
source plane. Equations~1! and ~2!, where the factors
exp(2it) and exp(2i2t) are suppressed andt5vt2kz, may
be considered as the complex-valued pressure amplitud
dimensionless form for the fundamental and second h
monic components, respectively. Whenn50, these two
equations are the fundamental and second harmonic fie
an axially symmetric source@13,17#.

We now assume that the sound beam on the sourc
given by

f n~j8!5Jn~aj8!, ~3!

which produces thenth-order Bessel function of the firs
kind, wherea5a8a is a scaling parameter ofJn . According
to Eq. ~1! and using the following formulas~4! @19#:

E
0

`

Jn~at !Jn~bt !e6 ig2t2t dt

56
i

2
g22 expF7

i

4
g22~a21b2!G Jn S 1

2
abg22D , ~4!

we obtain thenth-order Bessel fundamental beam,

q̄1~j,h!5Jn~aj!expS 2
i

4
a2h D . ~5!

Compared with the original form Ref.@2#, Eq. ~5! has an
additional exponential term with an imaginary argument. I
due to the fact that the paraxial approximation has been u
in the derivation of the integral representations@Eqs.~1! and
~2!# of the field. This approximation is valid in most cases
the propagation of ultrasound~and light! beams.

Substituting Eq.~5! into Eq. ~2!, we have the second ha
monic of theJn Bessel beam
s
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q̄2~j,h!5
1

2 Eh850

h E
j850

` j8

h2h8

3expS i2
j21j82

h2h8 D J2n S 4jj8

h2h8D Jn
2~aj8!

3expS 2
ia2h8

2 Ddj8 dh8. ~6!

With

Jn
2~z!5

2

p E
0

p/2

J2n~2z sin t !dt, ~7!

we transform Eq.~6! into a triple integral,

q̄2~j,h!5
1

p E
h850

h E
j850

` E
t50

p/2 j8

h2h8

3expS i2
j21j82

h2h8 D J2n S 4jj8

h2h8D
3J2n~2aj8 sint !expS 2

i

2
a2h8Ddj8 dh8 dt.

~8!

Using Eq.~4! again and integrating Eq.~8! with respect to
j8, we then have,

q̄2~j,h!5
i

4p E
h850

h E
t50

p/2

3expS 2
ia2h

2
sin2 t D J2n~2aj sin t !

3expF2
ia2h8

2
cos2 t Gdh8 dt. ~9!

It is easy to carry out the above integral abouth8 and reduce
Eq. ~9! to

q̄2~j,h!52
1

2pa2 expS 2
ia2h

2 D
3E

t50

p/2

J2n ~2aj sin t !

3F12expS ia2h

2
cos2 t D G 1

cos2 t
dt. ~10!

Equation~10! is an exact expression for the second-harmo
beam ofJn under the second-order approximation, and it c
be analytically expressed in terms of generalized hyperg
metric functions and Bessel functions~see the Appendix!,
with the help of a relatively complicated procedure. We p
fer to apply an alternative approximation, semianalytical b
much simpler, to show the properties of the second harmo
beam given by Eq.~10!. Before doing so, heuristically we
present a physical explanation of Eq.~10!, from the view-
point of the angular spectrum. The second harmonic of
nth-order Bessel beam may be understood as a linear su
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position of all the 2nth-order Bessel beamsJ2n(2aj sint)
with the transverse wave number from 0 to 2a ~correspond-
ingly, the limit of integration is from 0 top/2!, and with the
complex amplitude~or proportional to! f (t) of the angular
spectrum, where the functionf (t) is given by

f ~ t !5@12exp~ iz1 cos2 t !#/cos2 t, ~11!

with z15a2h/2. It is easy to show that for a sufficientl
large z1 , the real and imaginary parts of this function a
extremely similar to thed function d(t2p/2). This fact im-
plies that when the second harmonic of thenth-order Bessel
beam is generated in the far range from the source~from the
following analysis, this range is determined byz1>2p!, the
‘‘component’’ J2n(2aj) with the transverse wave numbe
2a is predominant. The numerical integration of the functi
~11! aboutt shows that

E
0

p/2

f ~ t !dt5S p

2 D 1/2S a2h

2 D 1/2

~12 i ! ~12!

is a surprisingly good result whenz1>2p. From the prop-
erty of thed function, theJn second-harmonic beam is the
well approximated by

q̄2~j,h!52
12 i

4p1/2a
h1/2J2n~2aj!expS 2

i

2
a2h D ,

~13!

in the region of 1/2a2h>2p. When generated in the rang
of 0< 1

2 a2h,p/2, extremely close to the source, th
second-harmonic component has the form

q̄2~j,h!5
ih

8
Jn

2~aj!expS 2
ia2h

2 D . ~14!

Between these two regions, i.e., whenp/2< 1
2 a2h,2p, the

radial behavior of the second-harmonic component devi
slightly from the prediction for Eqs.~13! and~14!. Although
differences exist in the latter two ranges, it is reasonable
think that Eq.~13! reveals the characteristics of the seco
harmonic of theJn beam, since the second harmonic asso
ated with the Bessel functionJ2n(2aj) is propagated in
nearly the entire region of the beam if the assumption
infinite apertures is considered. From the above analysis
therefore see that the generated second harmonic of an
trary nth-order Bessel beam has the following characte
tics:

~i! Like the nth-order Bessel fundamental beam, t
second-harmonic beam is also limited diffraction~or more
exactly speaking, nearly radially limited diffraction!, and the
pressure amplitude is simply proportional to the squared
of the propagation distance.

~ii ! The second-harmonic component of thenth-order
Bessel beam has the Bessel function distribution of the o
2n, and the corresponding scaling parameter is exactly tw
that of the Bessel fundamental beam.

~iii ! Thenth-order (n.0) Bessel fundamental beam has
spiral wave front dislocation with polarityn at its center@11#.
Correspondingly, the second harmonic of this beam is
spiral, with polarity 2n.
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~iv! The zeroth-order Bessel beam is an extremely spe
case in all Bessel beams. It has a sharp intensity peak a
center. The second-harmonic component of this beam is
a zeroth-order Bessel beam with 2a, and has exactly one-hal
times the beamwidth of the fundamental@13#. In most cases
of the conventional beams~focused or not, ultrasonic or op
tical!, the beamwidth of the nonlinearly generated seco
harmonic is generally 1/& times that of the fundamenta
This has been experimentally verified and theoretically p
dicted @20,21#.

In addition, it must be emphasized that Eqs.~10! and~13!
are derived under the quasilinear approximation. From
perturbation theory, these solutions are valid when the
lowing inequality is satisfied:

S 2

p D 1/2b~ka!2

a S u0

c Dh1/2,C. ~15!

Here, C;0(1), b is the acoustic nonlinear coefficient o
medium,u0 is the vibration velocity at the source center, a
u0 /c is the acoustic Mach number.

III. DISCUSSION

It should also be noted that our present analysis is ba
on the assumption of an infinite aperture. The aperture
practical Bessel~limited diffraction! beams is always finite
and the ‘‘Bessel function’’ characteristic of such beams
mains only within the depth of field. However, we may poi
out that the conclusions here will hold in the case of fin
aperture, as long as many lobes of the Bessel function
contained within the effective aperture of the Bessel bea
The detailed analysis of this case will be given separatel

Many practical applications of the Bessel beams ha
been demonstrated in both acoustics~medical ultrasonic im-
aging and tissue identification! and optics~precision align-
ment!. It may be expected that the higher-order Bessel bea
also have potential applications in nonlinear optics and n
linear acoustics@7,10#. In particular, we want to point ou
that theJ0 Bessel beam may be very useful for harmon
imaging, where both narrow beamwidth and large field de
are required not only for the fundamental ultrasonic be
but also for the nonlinearly generated second-harmonic c
ponent. An extra improvement of imaging resolution may
obtained by using this beam rather than conventional be
as indicated by the property~iv! above.

IV. CONCLUSION

Our theoretical analysis shows that the second harmo
of the nth-order Bessel beam is nearly limited diffractio
with the Bessel function distribution of the order 2n and the
scaling 2a, and that the amplitude along the beam axis
simply related to the square root of the propagation distan
This result is not only interesting from a fundamental po
of view, where thenth-order Bessel beam is ‘‘basis’’ mode
of the limited diffraction beam~i.e., any limited diffraction
beams are a linear superposition of the Bessel beams
example,X wave beams! @8#, it also offers valuable insigh
into the study of the nonlinear characteristics of more gen
limited diffraction beams.
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APPENDIX

An exact analytical expression of the integral in Eq.~10!,
denoted byX(j,h), is in terms of generalized hypergeome
ric functions 2F2 :

X~j,h!5
~21!n11pz

2 (
m52`

`

Jm~aj!Jm12n~aj!Fm,n~z!,

~A1!
tt

. A

ys
l
.

where

Fm,n~z!5
zm

22m~m11!! 2F2S m1
1

2
,m11;m12,2m11;zD ,

~A2!

with m5um1nu and z5 1
2 ia2h. In fact, Eq. ~14! corre-

sponds to the term ofm52n in Eqs. ~A1! and ~A2!. The
approximate solution~13! can be analytically obtained from
this general form of~A1! and~A2!, by using the asymptotic
expansion of2F2 for large argumentuzu and the sum theorem
of Bessel functions@19#.
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