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A method is developed for calculating fields produced with a two-dimensional (2D) array transducer.
This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction ar-
ray beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave
(cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams.
In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite eleva-
tion height. For beams produced with axially symmetric aperture weighting functions, this method can
be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be
used. The advantage of the method is that it is accurate and computationally efficient, especially in re-
gions that are not far from the surface of the transducer (near field), where it is important for medical imaging.

Both computer simulations and a synthetic array experiment are carried out to verify the method. Re-
sults (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method
is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with
the experiment.
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. INTRODUCTION

Transducers are an essential part of medical ultrasound imaging systems.' In earlier sys-
tems, transducers usually had a single element focused with a lens and images were formed
by steering the beams mechanically.” Mechanical scanning is slow and the transducer posi-
tioning system is bulky and is subject to mechanical wear. In modern imaging systems, elec-
tronic focusing and scanning have replaced mechanical scanning in commercial systems
except at high frequencies.” To steer and focus beams electronically, one-dimensional (1D)
array transducers are used. Commercial 1D array transducers typically have 128, 192 or 256
independent elements. Although 1D array transducers can steer and focus beams electroni-
cally in a plane defined by the array elements and its axial axis, they are not able to steer
beams or change focal distance dynamically perpendicular to this plane (elevation direc-
tion). To address this problem, one-and-a-half dimensional (1.5D) or one-and-three-quarter
dimensional (1.75D) array transducers were developed.”* The idea is to subdivide the length
of'each 1D array element into a few subelements to gain some control of beams in the eleva-
tion direction to improve image quality without significantly increasing the number of inde-
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pendently-addressable elements (keeping the relative simplicity of the electronics that
handle the signals of transducers). Because the width of elements in the elevation direction
in 1.5D or 1.75D array transducers is not small enough, it is difficult to steer the beams with-
out causing significant grating lobes in this direction. To be fully flexible in steering and fo-
cusing beams in both dimensions for three-dimensional (3D) imaging, fully populated
two-dimensional (2D) array transducers were developed.”® 2D array transducers are also
useful in applications such as phase aberration correction,”* production of limited diffraction
beams,” and high frame rate (HFR) 3D imaging."""* Therefore, field computations for 2D ar-
ray transducers are crucial in these applications.

Limited diffraction beams were first studied by Stratton'” and later by Durnin et al. In
1991, new families of limited diffraction beams called X waves were discovered.”” Based
on X waves, limited diffraction array beams™” and the high frame rate 2D and 3D imaging
methods have been developed.”'® Recently, X waves have been applied to nonlinear op-
tics.”** Theoretically, limited diffraction beams can propagate to an infinite distance with-
out spreading. In practice, when these beams are produced with finite energy and aperture,
they have a large depth of field. This property is useful in many applications.”

In this paper, a method is developed to calculate the fields produced by 2D array transduc-
ers.” In this method, the aperture weighting function of a 2D array transducer is decomposed
into limited diffraction array beams of different parameters.”** Because limited diffraction
beams are propagation invariant, they have simple analytical expressions and thus the total
field of a transducer can be obtained by a direct linear superposition of these beams. In addi-
tion, this method can be simplified and applied to a 1D array transducer of a finite or infinite
elevation height. For beams produced with axially symmetric aperture weighting functions,
this method can be reduced to the Fourier-Bessel method studied previously where an annu-
lar array transducer can be used.”™ The advantage of the method is that it is accurate and
computationally efficient, especially in regions that are not far from the surface of the trans-
ducer (near field), where it is important for medical imaging.

To verify the method, both computer simulations and a synthetic array experiment™ are carried
out to produce Bessel beams, focused Gaussian beams, X waves and asymmetric array beams
using 2D array transducers. Results show that the method is accurate as compared to that us-
ing the Rayleigh-Sommerfeld (RS)" diffraction formula and agrees well with the experiment.

The method above is different from the approach using the traditional RS diffraction for-
mula,” which is based on the Huygens’ principle and requires a double integration to calcu-
late wave fields. Although the RS method is accurate, the double integration is time
consuming in numerical implementation and is very difficult to calculate fields that are re-
sulted from a rapid change of phase of the integrand (this happens when fields are near the
surface and/or off the axial axis of the transducer). Although Fresnel and Fraunhofer ap-
proximations to the RS formula may be used to reduce computation in some cases, they are
limited to paraxial or far field applications."

Compared to the spatial impulse response methods, ™ the method with limited diffraction
array beams has advantages. Firstly, the coefficients of different limited-diffraction array
beams for a given 2D array transducer and its aperture weighting function can be calculated
separately and stored. These coefficients can then be used to compute fields at any point in
space by a simple 2D linear superposition. Secondly, the method can take advantage of fi-
nite bandwidth of any practical systems to reduce computations. Thirdly, the method does
not have the problem of requiring an extremely high sampling rate to calculate the impulse
responses that may exhibit Dirac-Delta function characteristics. If the Nyquist sampling rate
is not met, impulse response methods may often produce significant artifacts, leading to a
misinterpretation of a pulse or image simulated. Finally, impulse response methods require
acomplicated geometrical operation to calculate the impulse response of each transducer el-
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ement and then summed them over all elements. A numerical convolution is also needed to
obtain the final wave pulse for each point in space, which can also be time consuming at a
high sampling rate.

Another method is the angular spectrum decomposition.” This method may be compu-
tationally efficient since a 2D fast Fourier transform (FFT) can be used. However, when the
FFT is used, the field points in transverse space are predetermined on a rectangular grid. To
obtain a field at an arbitrary point in space, either interpolation or a high spatial sampling rate
isrequired. Inaddition, all field points at a given axial distance in space are calculated even if
only one or a few points in space are of interest at that depth, wasting the computation time.
If the aperture weighting function contains abrupt changes such as sudden pressure drop to
zero at the kerfs of a 2D array transducer, a high sampling rate over the 2D aperture may be
required to avoid aliasing.

Il. THEORY

In the following, formulas for calculating waves produced by 2D array transducers are de-
veloped. The formulas can also be simplified for 1D or annular array transducers. The isotro-
pic/homogeneous wave equation is given by:"’

2 1
[vz—ia—}p(r =0 )
¢’ ot

where V* is the Laplace, @ (7, #) is the acoustic pressure, velocity potential or Hertz potential
in free space, ¥ =(x, y, z) is a point in the space, 7 is the time and c is the speed of sound in a
medium or the speed of light in vacuum.

Using the Fourier transform relationship, a solution to the wave equation can be expressed as:

o A 2
O(F,1)= i [ @ 0)e™ dw @

where &)(?; o) is the Fourier transform of ®(7,¢) in terms of time and w=27f"is the angular
frequency, where f'is the frequency.

Limited diffraction beams such as X waves are solutions to Eq. (1).” These solutions do
not diffract in theory, meaning that once they are produced, they are able to propagate to an
infinite distance without changing their pulse shape in both space and time. With a linear su-
perposition of these beams of different orders, one obtains the following limited diffraction
array beam (see the derivations in references 10, 23-25), which is also a solution to Eq. (1):
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where the subscript ‘Array’ means array beam, « and v are integers, k=w/c is the wave num-
ber, A (k) is the electromechanical transfer function of a transducer, D, (®) are complex coef-
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ficients, c¢,=c/cos( is the wave speed, where ( is the Axicon angle' of the X waves
(k, =ksinCcosb, k, =ksinCsinbandk, =kcosC, where -n<<m (or 0<9<2TE) is a free param-
eter or the a21muthal angle) and H(k) i is the Heaviside step function:*

H( )= I, =0 (4)
0, <0

K, =(k, .k, ,k )isthe wave vector and where
k, =k —k — K 5)

From Eq. (3), one obtains the spectrum of @ (7,7):

A(Kk)H (k)
c

v (F) = D, (e (6)

If the system is assumed linear, the total field at 7 is a linear superposition of those pro-
duced by Eq. (6) (assuming that the summation exists):

CD(r ®) = Z Z A(k)H(k) D, (®)e iR, 7 )

U=—00 Yy=—0

Now, let us determine the coefficients D, (®), for a 2D array of a given aperture weighting

uy

function. Assuming that a planar 2D array transducer is located at the plane z=0, the field
produced at the transducer surface is given by:

0(F;0), (x|<w, [n|<w,) (®)
0, (w, <|x|<R, w, <‘yl‘SRy)

(73 0) =

where é(?] ; ) is the field at the surface of the transducer, 7, =(x,, y,,0) is a point at the sur-
face and w_and w, are the half widths of the aperture size of the array transducer along the x,
and y, axes, respectively (Fig. 1). The array transducer is assumed to be surrounded by a
rectangular frame (w, <[x||<R,, w,<[y||<R)) with zero field amplitude, where R and R, are the
halfwidths of the outer frame. In addition, the pattern in Eq. (8) is periodically repeated out-
side of the frame bounded by (|x||<R, |y,|<R)) with periods of 2R _and 2R, in the x, and y, di-
rections, respectively. Apparently, as both R —o0 and R —, Eq. (8) represents a single
array without a spatial repetition.

Since Eq. (8) is a periodic function, it can be expanded as a Fourier series” with periods of
2R and 2R along the x, and y, axes, respectively. Letting z=0 in Eq. (7), we obtain such a se-
ries:

q)(r'l’(o) Z z A(k)H(k) u,v(ﬂ))elkx“xlelk”'y‘

U=—00 y=—00
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FIG. 1 Coordinates of a 2D array transducer.
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and where u,v=%1, £2, £3, ...
The coefficients of the Fourier series in Eq. (9) are given by:*

e w e (12)
ARHE b (@)=L [ [ Brop™"e ™ dvdy
C

Assuming that an array transducer consists of MxN rectangular elements and the spatially
quantlzed driving and aperture weighting function of an element centered at (x, ,y, )is

D, ()= ) (x, ¥, ;®),where ISm<M, 1<n<N,and M and N are integers, the 1ntegrat10n
in Eq. (12) can be precalculated and stored as known coefficients:

(13)
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where w —andw, are the half widths of the transducer element centered at(x, , y, )along
the x, and ¥, axes, respectlvely, and sinc(-) is the sinc function. If (1) L(0) = E(a))G(x sV
Where E(®) is the spectrum of the excitation signal of the transducer and G(x, ,y, )isa
transducer aperture weighting function that is not a function of ®, the double summation in
Eq. (13) needs to be calculated only once and then stored for all ®, saving computer memory
usage and speeding up the computation. For a 1D array transducer (NV=1) with a finite eleva-
tion width (y, direction), the double summation in Eq. (13) is reduced to a single summation.
Ifthe height of the 1D array in elevation is infinity, then k, =0 and thus the field willnotbe a
function of y. In this case, it is easy to obtain a 1D version of Eq. (13):
AOHE b (0)=23 0, B, @)sinet, w, )™ o
c

x m=l

Itis seen that both the indices vand n in Eq. (14) are removed, greatly simplifying the compu-
tation.

From Egs. (7) and (2), one obtains the wave produced by a 2D array (it is clear that this for-
mula as well as Eq. (7) show that limited diffraction beams are very useful in forming analyt-
ically an arbitrary physical beam):

R 2 B | o (15)
@(?,t):ijifl(k)f(k){z > D, (@)e™" }e’ do

—o U=—00 y=—00

where the coefficient, A(k)H(k)D, (w)/c,is given by Eq. (13). For a single array transducer
without repeating over the plane, z=0, the Fourier series in Eq. (15) can be evaluated with
Fourier integrals through the following limits:*

CD(I" t)_ lim — J- M{Z z Du’v(w)eilzw ~?:|e—imtdw (16)

R, R~>0027-c

—o U=—00 y=—00

In ultrasonic imaging, the region of interest is usually in the near field and around the axial
axis of a transducer. In this case, both R and R need only to be a few times bigger than the
corresponding dimensions of the transducer to obtain accurate results. This can be seen from
the computer simulations in the next section.

The infinite sums in both Egs. (15) and (16) are not necessary because as |u| and |v| in-
crease, k. + k2 will exceed &* and this makes k., inEq. (5) imaginary. For imaginary k. ,
the correspondrng components in Egs. (15) and (16) become evanescent waves that attenu-
ate rapidly along the z axis (usually within a few wavelengths). Letk_ change from —k fo k;
according to Eq. (10), # will then change from —u__ (k) to u__ (k), where u (k) is an integer

max ‘max max

that is larger than but is the closest to kR /m, or,

kR. 2R 17
(k) = == 25 4

From Egs. (5) and (11), the change of v is allowed to be from —v__(u,k) tov__(u,k), where
V,(14,6) 1s an integer that is larger than but is the closest to R, k> —(un/R.)* / n. Using

these conditions, Eq. (15) can be written as:
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g () Vi (106 P (18)
0.0 J-A(k)H(k){ §¢ S @ e o

—® u=—up. (k) v=—v .. (u,k)

The Fourier transform in terms of time in Eq. (18) can be calculated with the discrete Fou-
rier transform (DFT) or fast Fourier transform (FFT).” Corresponding to Eq. (14), Eq. (18)
can be simplified for a 1D array of an infinite height in elevation direction:

gy (K) o (19)
O 1) %IAw?w{ Y D) (@) e o

u=—up,. (k)

-

where 7 =(x,2), K, =(k, .k, )and where k, =k’ -k .
In a practical ultrasonlc 1mag1ng system, A(k) in Egs. (1 8) and (19) is a bandpass function
and can be approximately modeled as a Blackman window function:”

0.42—0.5¢c0s X +0.08c0s 2K | o<k <2k 20
A(h) = K K,
0 Otherwise

where k,=2nf/c and f; is the center frequency. Thus the —6dB bandwidth of A(k) is about
81% ofits center frequency, which is typical for medical ultrasound. Due to the bandlimited
nature, the computation for Egs. (18) and (19) can be further reduced (fewer discrete ® are
needed).

It is worth noting that if the aperture-weighting function is axially symmetric, the limited
diffraction array beam method for 2D array transducers can be simplified to the Fou-
rier-Bessel method studied previously where an annular array transducer can be used.””
The limited diffraction array beam @'/ (7, ®), in Eq. (6) can be used to construct other axi-
ally symmetric limited diffraction beams that are a function of a radial distance » =/x* + y°
but are not a function of the azimuthal angle, -n<6<r. Assuming thatk, =a, cos 6 and
k, =a, sin 6, wherea,and  are free parameters, from Eq. (5), one obtains k, =B, = w/k2 —-a’
Insemng k. .k, andk_ intoEq.(6)andaveraging the resultfor 0 from 0 to 2w, one obtalns
the spectrum of a limited diffraction Bessel beam'™ ™ that is a solution to the wave equation

Eq. (1):
~ Tk 2
@%umﬁﬂggﬁqmﬁﬁi ”@}

= AOTE) ) @), 0,r)e™
C

where u=1,2,3, .,.and J (o) is the zeroth-order Bessel function of the first kind. Similar to
Eq. (7), a linear superposition of Eq. (21) is still a solution to the wave equation at a single
frequency (assuming that the summation exists):

& (r,z0) = —A(k)H O3 b, (@), (0, )™ (22)

u=1
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Similar to Eq. (9), any well-behaved axially symmetric aperture weighting function at the
transducer surface (z=0) can be expressed as a Fourier-Bessel series” over the integer, u,
with o, =¢ /R, where g, is the uthroot of J (-) (i.e., J,(¢,)=0) and R>a is the outer radius of the
aperture-weighting function of the transducer, and where « is the radius of the weighting
function (the weighting function is assumed to be zero for a<r,<R, where 1, =4/x; +y}):

- AGH (k) & (3)
O(r:0) = =——=> D, (@)J,(0,1)
u=l
The coefficient, D (o), can be obtained from a formula similar to Eq. (12):"
(24)

A(K)H (k) 2 4.
fDu((D)=m_([q)(”1a®)Jo(%”1)’id’i

where a)(r1 ; @) is the field at the surface of the transducer and J,(+) is the first-order Bessel
function of the first kind. Equations (22) and (24) form the basis of the Fourier-Bessel
method.”” They are suitable for calculating fields produced with an annular array trans-
ducer. Similar simplification steps leading to Egs. (13) and (18) are also applicable to Egs.
(24) and (22), respectively.

lll. SIMULATION AND EXPERIMENTAL RESULTS

A. Transducer and experimental conditions

For numerical examples in the following subsections, two array transducers are assumed.
One has 50x50 equal-sized elements, while the other has 250x250. Both arrays have a total
area of 50mmx50mm. For simplicity, kerfs between the elements are not considered. The
center frequency of the transducers is assumed to be f=2.5MHz. In the pulse-wave (pw)
study, a tapered sine wave of about one-and-a-half cycles is used to excite the transducers:

e sin(2n 1), 0<t<20.48us (25)
0 Otherwise

e(t)=

where #,=0.4ps. Taking a Fourier transform of (Eq. 25), we have:
E(w)=3,{e(t)} (26)

where 3, represents the the Fourier transform in terms of time.

To verify the simulation results, data from a synthetic array experiment™ were used to pro-
duce various beams. In the experiment, a broadband PZT ceramic/polymer composite trans-
ducer of about 1 mm effective diameter and 2.5MHz center frequency was used to scan in a
raster format. At the centers of elements of an equivalent 2D array of S0mm wide aperture,
the transducer emitted a short pulse. A polyvinylidene fluoride (PVDF) needle hydrophone
of 0.5mm diameter was used to receive the waves produced by the transducer at various spa-
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tial points. The measured data were then used to form various beams by applying different
aperture weightings. More details of the experiment are given in reference 40.

B. Simulation and experiment of cw fields

Three cw fields are studied in this section. The first is a zeroth-order Bessel beam, ™

which has the following aperture weighting function:

A(k)H (k o)
q~)m,n(03) = ME((D)JO(Q’?W ), r, <25mm

0, Otherwise

where 0=1202.45m™" is a scaling parameter, K=y /xl + y1 is the radius to the center of
the element (m,7n) from the center of the array transducer and £ (o) is a complex constant ata
single frequency. In the case of Bessel beam or any axially symmetric beams, the Fou-
rier-Bessel method using an annular array transducer can be used to reduce the computa
tion.”””’

The second is a focused Gaussian beam’' with the following aperture weighting function:

2 el = 2 28
ABHE) gy '™ ¢ ) <25mm

~ n
(Dm,n (0)) = c ’ 1m,n

0, Otherwise

where 6=15mm with a corresponding full width at half maximum (FWHM) of 25mm for the
Gaussian function and F=100mm is the focal distance of the beam.
The third is an asymmetric array beam, which is defined as:*™”

29
AR HE) E(w)cosk, x, cosk,y , nr <25mm @9

®, ,(0)=
0, Otherwise

where £, =1,000 m "and k, =500 m’ are scaling factors of the array beam.

The simulations for the ﬁrst two beams are carried out using both Egs. (13) and (18) for
both 50x50 and 250x250 element arrays. For the third beam, results are obtained for the
250%250 element array only. To reduce the amount of computation in obtaining the coeffi-
cients in Eq. (13), we first assume that R =2w =50 mm and R =2w =50 mm to calculate the
coefficients and denote them D | (w). Thls increases the step size of bothk, andk, accord-
ing to Egs. (10) and (11), respectlvely To increase the accuracy of the ﬁeld calculation, we
then set R =10w, and R =10w,. The increased number of coefficients D, (o) is obtained with
a bilinear 1nterpolat10n (or other more accurate interpolation scheme such as zero padding)
from D* , (o). Note that the settings, R =10w_and R =10w, are conservative for the fields
51mu1ated in this paper. Larger R /w, and R /w, ratios are only needed when simulated fields
are very far from the transducer surface as compared to the physical size of the transducer or
are outside of the aperture projection area of the transducer. In general, the farther away a
simulated field point is outside of the aperture projection area of a transducer or away from
the surface of the transducer, the larger the ratios will be. In medical imaging applications
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Simulated CW JoBessel and Focused Gaussian Beams

(fc= 2.5 MHz, BW = 0.81f,, D=50mm)
(= 1202.45 m™ for Bessel, FWHM = 25 mm and F = 100 mm for Gaussian )

210 mm 210 mm

(a) Bessel 250x250 Elements (b) Bessel 50x50 Elements

(c) Gaussian 250x250 Elements (d) Gaussian 50x50 Elements

FIG. 2 Cw fields (through the axial axis) simulated with limited diffraction array beams for a Bessel beam ((a)
and (b)) and a focused Gaussian beam ((c) and (d)) that are produced with a 2.5 MHz and 50 mm x 50 mm 2D array
transducer of 250 x 250 ((a) and (¢)) and 50 x 50 ((b) and (d)) square elements. The horizontal dimensions of the im-
ages are along the z axis and the vertical direction is transverse to the beams. Stepwise aperture weightings are as-
sumed for both Bessel and focused Gaussian beams. The scaling parameter o for the Bessel weighting is 1202.45
m". The focal length and the full-width-at-half-maximum (FWHM) of the focused Gaussian weighting are 100 mm
and 25 mm, respectively. The images are log compressed with a dynamic range of 40 dB.

where near fields are of concern, the ratios can be smaller. Further reduction of computation
can be achieved by taking advantage of the symmetry of the aperture weighting functions in
Egs. (27) and (28). After getting D, (), a cw version of Eq. (18) is used to calculate the field
(see also Eq. (7)):

(30)

~ Unax () Vg (k)
@(?;w):—A(k)cH(k) D

D, (@e""

U=y (K) V=—Vyax (k)

Figure 2 shows the fields simulated with limited diffraction array beam method (using
Egs. (13) and (30)) for both Bessel and focused Gaussian aperture weightings as defined in
Egs. (27) and (28), respectively. Figures 2(a) and 2(c) are produced with an array of
250x250 elements. As a comparison, fields produced with an array of 50x50 elements but
with the same array dimension (50 mmx50 mm) are shown in figures 2(b) and 2(d). It is
clear that as the number of array elements is reduced while the size of each element increases
(less accurate aperture weighting quantization), the influence of the edge waves of the ele-
ments appear at distances near the surface of the transducer. After some distance, the influ-
ence is negligible. In addition, the Bessel beam has a very large depth of field as compared
with the focused Gaussian beam. Figures 3 and 4 show a comparison among the results ob-
tained from the limited diffraction array beam method, the Rayleigh-Sommerfeld diffrac-
tion formula, and the synthetic array experiment.” The results of the limited diffraction
array beam method and the RS method are virtually the same. However, the limited diffrac-
tion array beam method allows very accurate and fast computation for fields near the surface
of transducers as compared to the RS method. In the RS method, fast phase changes near the
surface of the transducers make the convergence of double integration difficult. The results
also agree well with those obtained with the synthetic array experiment. Some differences
between the simulation and experiment are due to the inaccuracies of the synthetic array ex-
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(a)
5
z= 100 mm
0 ___Simulation (Our Method) 250x250 Elements
5 - - - Simulation (R-S Method) ]

Experiment

(b)
z= 100 mm

50x50 Elements

Normalized Magnitude

Lateral Distance (mm)

FIG.3 Lateral line plots of the cw Bessel beams in figure 2 at axial distance z= 100 mm away from the surface of
the 2D array transducer of (a) 250 x 250 and (b) 50 x 50 square elements, respectively. Solid lines represent simula-
tion results with limited diffraction array beams while dashed lines are the results with the Rayleigh-Sommerfeld
diffraction formula. Dotted lines are the experiment results obtained with the synthetic array experiment described
in reference 40.

periment, such as the size of the point source, positioning inaccuracies in both transverse and
axial directions, noise and influence of nonlinear propagation of waves in water.

Let us see an example showing relative computation speed between the method with lim-
ited diffraction array beams and the RS method. A cw filed is calculated under the same con-
ditions as those for figure 2(b) except that R =10w_and R =10w, are directly used in Eq. (13)
to get coefficients without any interpolations. In this case, with a 3.0GHz Intel Pentium 4
computer of 2GB memory and a C program in Linux, it takes about 22 minutes and 19.2 sec-
onds to calculate the coefficients with Eq. (13) and additional 95 minutes and 42 seconds to
get the field using Eq. (30). With the RS method, it takes about 108 minutes and 3.6 seconds
to calculate only one vertical line at a depth of 100 mm shown in figure 3(b). There are 210
vertical lines in figure 2(b) and each line has 125 points. This means that to obtain the same
vertical line, the limited diffraction array beam method requires only about 27.34 seconds if
the coefficients are precalculated with Eq. (13). If interpolations are used, the time for get-
ting the coefficients with Eq. (13) can be reduced.

For the asymmetrical array beam weighting in Eq. (29), simulation results are obtained for
only one array of 250x250 elements. Unlike the format of figure 2, the asymmetrical beam
is shown in the x-y plane (Fig. 5) at several depths. Figure 6 compares the results between the
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(a)
z= 100 mm
0 ___Simulation (Our Method) 250x250 Elements
5 - - - Simulation (R-S Method)
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s NN o -
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FIG.4 Same as figure 3, except that it is for the cw focused Gaussian beam. The focal length and the FWHM of
the beam are the same as those in figure 2.

limited diffraction array beam method and the synthetic array experiment. The results also
agree well with each other.

C. Simulation and experiment for pw fields

Zeroth-order X wave, focused Gaussian pulse and asymmetrical array beam pulse focused
in the x direction are simulated and verified by the synthetic array experiment in the follow-
ing pw studies. Similar computation reduction methods for cw fields are also used for pw
fields. R =10w, and R =10w, are assumed in the simulation.

Fora zeroth-order X wave, the spectrum of the aperture weighting function is given by:

2ra, A(k)H (k) (31)

D, (@)= c’

E(®)e “ J(kr, sin), r <25mm
0, Otherwise
where ¢,=0.05 mm is a parameter that determines the fall-off speed of the high-frequency

components of X waves, {=4" is an Axicon angle’”* and c=1,500 m/s is the speed of sound
in water.
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Simulated CW Asymmetric Array Beam

(fc= 2.5 MHz, BW = 0.81fc, D = 50 mm, kx = 1000 -} ky = 500 m™, 250x250 Elements )

50 mm 50 mm

50 mm

[GEERE T (d)yz=216 mm

FIG. 5 Transverse cw fields simulated with limited diffraction array beams for an asymmetrical grid array
beam™™ that is produced with a 2.5 MHz and 50 mm x 50 mm 2D array transducer of 250 x 250 square elements at
four axial distances, (a) z= 50 mm, (b) z= 100 mm, (c) z= 150 mm and (d) z= 216 mm away from the transducer sur-
face. A stepwise aperture weighting is assumed for the asymmetrical grid array beam. The scaling parameters are
1000 m™ and 500 m™ along the x, and y, axes, respectively. The images are log compressed with a dynamic range of

40 dB.
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FIG. 6 Lateral line plots of the cw asymmetrical array beam in figure 5 at two axial distances, z =100 mm ((a)
and (b)) and z=216 mm ((c) and (d)). Ateach distance, line plots are given in both the x ((a) and (c)) and y ((b) and
(d)) axes. Solid lines represent simulation results with limited diffraction array beams while dotted lines are results

with the synthetic array experiment described in reference 40.
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Simulated X Wave

(fe= 2.5 MHz, BW = 0.81f;, D = 50 mm, ag = 0.05 mm, {=4°, 50x50 Elements )

20.48ys 20.48ps

0dB

I—ZO dB

S4B
(a) z = 100 mm (b) z = 170 mm

(c)z=216mm (d) z = 340 mm

FIG.7 An X wave (through the axial axis) simulated with limited diffraction array beams and produced with a
2.5 MHz and 50 mm x 50 mm 2D array transducer of 50 x 50 square elements at four axial distances, (a) z= 100 mm,
(b) z=170 mm, (¢) z=216 mm, and (d) z = 340 mm, away from the transducer surface. The horizontal direction of
the images is the time and the vertical dimension is transverse to the wave axis. A broadband pulse excitation and a
stepwise aperture weighting are assumed. The free parameter, a,, and the Axicon angle, C, are assumed to be 0.05
mm and 4 degrees, respectively. The transmitting transfer function of the 2D array is assumed to be a Blackman win-
dow function peaked at the center frequency of 2.5 MHz, and the -6dB bandwidth of the array is about 81% of the
center frequency. The images have the same dynamic range as those in figure 2.

10
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z= 100 mm

5

0 ___ Simulation
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z= 216 mm

Normalized Magnitude

-20 -10 0 10 20
Lateral Distance (mm)

FIG. 8 Lateral plots of the maximum sidelobes of the X wave in figure 7 at two axial distances, (a) z= 100 mm
and (b) z=216 mm. The plots are transverse to the axial axis of the wave. Solid lines show the simulation results us-
ing limited diffraction array beams and the dotted lines are those from the synthetic array experiment.”
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Simulated Focused Gaussian Pulse
(fe= 2.5 MHz, BW = 0.81f;, D = 50 mm, FWHM = 25 mm, F = 100 mm, 50x50 Elements )

20.48us 20.48us

o
n

(a)z = 50 mm (b) z = 100 mm

50 mm

(c) 2 = 150 mm (d) z =216 mm

FIG. 9 This figure is the same as figure 7, except that it is a broadband focused Gaussian pulse at four axial dis-
tances, (a) z=50 mm, (b) z= 100 mm, (¢) z= 150 mm and (d) z =216 mm away from the transducer surface. The fo-
cal length and the FWHM of the pulse are the same as those of the cw focused Gaussian beam in figure 2.
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FIG.10 Same as figure 8, except that it shows the lateral plots of the maximum sidelobes of the focused Gaussian
pulse in figure 9 at two axial distances.

For a focused Gaussian pulse, the aperture weighting function is the same as that in Eq. (28).
The aperture weighting function of the asymmetrical array beam focused in the x direction

is given by:
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Simulated PW Asymmetric Array Beam Focused In X Direction

(fe= 2.5 MHz, BW = 0.81f;,D = 50 mm, kx= 1000 m} ky= 500 ni! F= 100 mm, 50x50 Elements )
20.48us

(a)z =50 mm (b)z = 100 mm

\

(¢) 2 = 150 mm (d)z =216 mm

FIG. 11 Same as figure 9, except that it is a broadband focused asymmetrical array beam. Beam profiles in the
x-t plane are shown. The scaling parameters in the x, and y, directions are the same as those of the cw asymmetrical
array beam in figure 5. A cylindrical lens of a focal length of 100 mm is added in the x, direction.
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FIG.12 Same as figure 8, except that it is for the asymmetrical array beam with a lens added in the x, direction as
shown in figure 11.

(32)
~ ME(@)COS k. x, cosk, y e 1, <25mm

(Dmﬂ ((D) — c 0 m 07 In m.n
0, Otherwise

—ik(\JF*+x], =F)
b
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where =100 mm is the focal length and other parameters are the same as those in Eq. (29).

After obtaining the coefficients D, (®) with Eq. (13), from the aperture weighting func-
tions Egs. (28), (31) and (32), pw waves can be calculated with Eq. (18).

Figure 7 shows an X wave simulated with the limited diffraction array beam method (us-
ing Egs. (13) and (18)) at four axial distances using a 50x50 element array transducer. The
aperture weighting function is given by Eq. (31). The shape of the letter ‘X’ is evident in the
images. The center spot of the wave keeps its shape over a large traveling distance. The X
wave is broadband (has a short temporal duration). Figure 8 shows the maximum sidelobes
at two axial distances and compares the results obtained with the limited diffraction array
beam method with the synthetic array experiment.”

A focused pw Gaussian beam is shown in figure 9 in a similar format as that of figure7.
The aperture weighting function is given by Eq. (28) and is the same as that of the cw focused
Gaussian beam in figure 2 except that the bandwidth in figure 9 is wide, resulting in a short
pulse. Other parameters of the beam are the same as those in figure 2. The maximum
sidelobes of the pulse at two axial distances are shown in figure 10 for results from both the
simulation and the synthetic array experiment.

Figure 11 shows an asymmetrical array beam pulse focused at 100 mm in the x direction.
The pulse is shown in the x-f plane through the axial axis, z, in a similar format as that of fig-
ure 9. The Fourier transform characteristic at the focal distance is clearly seen (a donut-hole
shape of the pulse). The comparison between the simulation in figure 11 and the results ob-
tained with the synthetic array experiment is shown in figure 12.

IV. CONCLUSION

In this paper, a method to calculate continuous wave (cw) and pulse wave (pw) fields of
two-dimensional (2D) array transducers is developed using limited diffraction array beams.”*
This method can also be simplified for one-dimensional (1D) array transducers. When the
method is applied to axially symmetric beams, where annular array transducers are used, it
can be reduced to the Fourier-Bessel method studied previously.””

Computer simulations and a synthetic array experiment show that the method is accurate
and fast as compared to the conventional Rayleigh-Sommerfeld diffraction formula.” How-
ever, as can be seen from the derivation of the theory, this method is only valid for applica-
tions where linearity of wave propagation can be assumed.
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