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Abstract – Limited-diffraction beams are a class of waves that may be localized in space and time. 

Theoretically, these beams are propagation invariant and can propagate to an infinite distance without 
spreading. In practice, when these beams are produced with wave sources of a finite aperture and 
energy, they have a very large depth of field, meaning that they can keep a small beam width over a 
large distance. Because of this property, limited-diffraction beams may have applications in various 
areas such as medical imaging and tissue characterization. In this paper, fundamentals of limited-
diffraction beams are reviewed and the studies of these beams are put into a unified theoretical 
framework. Theory of limited-diffraction beams is further developed. New limited-diffraction solutions 
to Klein-Gordon Equation and Schrodinger Equation, as well as limited-diffraction solutions to these 
equations in confined spaces are obtained. The relationship between the transformation that converts any 
solutions to an ( -1)-dimensional wave equation to limited-diffraction solutions of an -dimensional 
equation and the Lorentz transformation is clarified and extended. The transformation is also applied to 
the Klein-Gordon Equation. In addition, applications of limited-diffraction beams are summarized.  
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I. INTRODUCTION  

One type of limited-diffraction beams was first described by Stratton as “undistorted progressive 
waves” (UPW) in his book in 1941 [1]. In 1987, without referring to Stratton’s work, Durnin et al. 
studied the UPWs with both computer simulation and an optical experiment [2]-[4]. Because the UPWs 
in Stratton’s book have a Bessel transverse beam profile, they are termed Bessel beams. Durnin et al. 
have named the Bessel beams “nondiffracting beams” or “diffraction-free” beams [2]-[4]. Because 
Durnin’s terminologies are controversial in scientific community, these beams are termed “limited-
diffraction beams” [5] since all practical beams or waves will eventually diffract. Bessel beams are 
localized in transverse direction and may have potential applications [6]-[14]. In acoustics, the first 
Bessel annular array transducer was designed and constructed in 1990 [15]-[16], and patented in 1992 
[17]. The applications of Bessel beams in acoustics were also studied extensively [18]-[30].  

Localized waves (LWs) were first developed by Brinttingham in 1983 and were termed focus wave 
modes [31]. LWs have similar properties as Bessel beams in terms of transverse localization. In 
addition, LWs contain multiple frequencies and may be localized in the axial direction. LWs have been 
studied by many investigators [32]-[40]. However, LWs are not propagation invariant, i.e., they do not 
meet the propagation-invariant condition as defined in the following: If one travels with the wave at a 
speed, , he/she sees a wave packet, 1c ( , )r tΦ

G = 1( , , )x y z c tΦ − , that is unchanged for =constant, 
where  is the axial axis along the direction of wave propagation, 

1z c t−
z ( , , )r x y z=

G  is a point in space, and t  
is the time.  

To find multiple frequency waves that are propagation invariant, i.e., ( , )r tΦ
G = 1( , , )x y z c tΦ − , in 

1991, X waves were developed [41]-[43] and were subsequently studied [44]-[54]. The name, “X 
waves”, was used because the beam profile in the axial cross-section (a plane through the beam axis) 
resembles the letter “X”. Due to the interest of X waves in nonlinear optics and other applications, X 
waves were introduced in the “Search and Discovery” column of Physics Today in 2004 [55]. The two 
1992 X wave papers [42]-[43] were awarded by the Ultrasonics, Ferroelectrics, and Frequency Control 
(UFFC) Society of the Institutes of Electrical and Electronics Engineers (IEEE) in 1993. Later, an X 
wave experiment in optics was performed by Saari and Reivelt and was published in 1997 in Physical 
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Review Letters [56]. To generalize the X waves, a transformation that is used to obtain limited-
diffraction beams (including X waves) in an -dimensional space from any solutions to an ( -1)-
dimensional isotropic/homogeneous wave equation was developed in 1995 

N N
[44], where  is an 

integer. This formula has been related to part of the Lorentz transformation 
2N ≥

[57]-[58], and was used and 
demonstrated by other researchers [59]-[60]. Furthermore, an X wave transform that is a transformation 
pair was developed in 2000 for any physically realizable waves using the orthogonal property of X 
waves [46]-[47]. The orthogonal property of X waves was further studied by Salo et al. in 2001 [61]. 
The transformation pair allows one to decompose an arbitrary physically realizable wave into X waves 
(inverse X wave transform) and determine the coefficients (forward X wave transform) of the 
decomposition. Based on the X wave theory, a method and its extension that are capable of an ultra high 
frame rate (HFR) two-dimensional (2D) or three-dimensional (3D) imaging were developed in 1997 
[62]-[82]. Due to the importance of this method, it was noted as one of the predictions of the 21st century 
medical ultrasonics in 2000 [83]. After the introduction of X waves in 1991 [41]-[43], these waves have 
been studied extensively by many investigators [56], [58]-[60], [84]-[118]. There are also some review 
papers on X waves and their applications [119]-[126].  

In this paper, fundamentals of limited-diffraction beams are reviewed and the studies of these beams 
are put into a unified theoretical framework. Theory of limited-diffraction beams is further developed. 
New limited-diffraction solutions to Klein-Gordon Equation and Schrodinger Equation, as well as 
limited-diffraction solutions to these equations in confined spaces are obtained. The relationship 
between the transformation that converts any solutions to an ( -1)-dimensional wave equation to 
limited-diffraction solutions of an -dimensional equation and the Lorentz transformation is clarified 
and extended. The transformation is also applied to the Klein-Gordon Equation. In addition, some 
applications of limited-diffraction beams are summarized.  

N
N

II. FUNDAMENTALS OF LIMITED-DIFFRACTION BEAMS  

A. Bessel Beams  

An -dimensional isotropic/homogeneous wave equation is given by:  N

2 2

2 2 2
1

1 ( , ) 0
N

j j

r t
x c t=

⎡ ⎤∂ ∂
− Φ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑ G

= ,  (1) 

where , ( 1, 2,..., )jx j = N  represents rectangular coordinates in an -dimensional space,  is an 
integer,  is a scalar function (sound pressure, velocity potential, or Hertz potential in 
electromagnetics) of spatial variables, 

N 1N ≥
( , )r tΦ
G

1 2( , , )Nr x x x=
G " , and time, t , and c  is the speed of light in 

vacuum or speed of sound in a medium.  
In three–dimensional space, we have:  

2
2

2 2

1 ( , ) 0r t
c t

⎛ ⎞∂
∇ − Φ =⎜ ⎟∂⎝ ⎠

G ,  (2) 

where  is the Laplace operator. In cylindrical coordinates, the wave equation is given by:  2∇

2 2 2

2 2 2 2 2

1 1 1( ) ( , )r r
r r r r z c tφ
⎡ ⎤∂ ∂ ∂ ∂ ∂ 0t+ + − Φ =⎢ ∂ ∂ ∂ ∂ ∂⎣ ⎦

G
⎥ ,  (3) 

where 2r x y= + 2  is the radial distance, 1tan ( / )y xφ −=  is the polar angle, and  is the axial axis.  z
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One generalized solution to the -dimensional wave equation in N (1) is given by [42], [119]:  

1 2( , ,..., ; ) ( )Nx x x t f sΦ = ,  (4) 

where 

( )
1

1
1

( ),  1
N

j j N N
j

s D x D x c t N
−

=

= + ±∑ ≥ ,  (5) 

and where jD  are complex coefficients, ( )f s  is any well-behaved complex function of , and  s

1
2 2

1
1

1 /
N

j N
j

c c D D
−

=

= +∑ .  (6) 

If  is real, 1c ( )f s  and its linear superposition represent limited-diffraction solutions to the -
dimensional wave equation 

N
(1).  

For example, if , 3N = 1x x= , 2x y= , 3x z= , 1 0 ( , ) cosD kα ζ θ= , 2 0 ( , )sinD kα ζ θ= , 

3 ( , )D b k ζ= , with cylindrical coordinates, one obtains families of solutions to (3) [42], [119]:  

0

1( ) ( ) ( ) ( )
2

s T k A f s d d
π

ζ
π

θ θ
π

∞

−

k
⎡ ⎤

Φ = ⎢ ⎥
⎣ ⎦

∫ ∫   (7) 

and 

1( ) ( ) ( ) ( )
2K s D A f s d d

π π

π π

ζ θ θ ζ
π− −

⎡ ⎤
Φ = ⎢ ⎥

⎣ ⎦
∫ ∫ ,  (8) 

where 

[ ]0 ( , ) cos( ) ( , ) ( , )s k r b k z c k1 tα ζ φ θ ζ ζ= − + ± ,  (9) 

and where  

[ ]2
1 0( , ) 1 ( , ) / ( , )c k c k b kζ α ζ= + ζ ,  (10) 

and 0 ( , )kα ζ , ( , )b k ζ , ( )A θ , , and ( )T k ( )D ζ  are well-behaved functions, and θ , , and k ζ  are free 
parameters. If 1( , )c k ζ  is real, and is not a function of  and k ζ , respectively, , ( )sζΦ ( )K sΦ , are 
families of limited-diffraction solutions to the wave equation (3).  

The following function is also a family of limited-diffraction solution to the wave equation [42], 
[119]:  

1 2( , , ) ( , ) ( )L r z ct r z ctφ φΦ − = Φ Φ − ,  (11) 

where  is any well-behaved function of 2 (z ctΦ − ) z ct−  and 1( , )r φΦ  is a solution to the transverse 
Laplace equation:  
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2

12 2

1 1( ) ( , )r r
r r r r

φ
φ

⎡ ⎤∂ ∂ ∂ 0+ Φ =⎢ ⎥∂ ∂ ∂⎣ ⎦
.  (12) 

If , '( ) ( )T k k kδ= − ( ) sf s e= , 0 ( , )k iα ζ α= − , and ( , )b k iζ β=  in (7) and (9), we have:  

cos( ) ( )1( ) ( )
2

i r i z ts A e d e
π

α φ θ β ω
ζ

π

θ θ
π

− − −

−

⎡ ⎤
Φ = ⎢ ⎥

⎣ ⎦
∫ ,  (13) 

where '2 2kβ α= −  is the propagation parameter, '(k kδ )−  is the Dirac-Delta function, and 
' /k c 0ω= >  is the wave number and ω  is the angular frequency. If ( ) n inA i e θθ = , one obtains an th-

order Bessel beam 
n

[2]-[4], [15]-[17]:  

1

( )

( , ) ( , , )

( ) ,  ( 0,1,2,
n nB B

in i z t
n

r t r z c t

e J r e nφ β ω )

φ

α −

Φ = Φ −

= =

G

"
, (14) 

where the subscript “ nB ” means n th-order Bessel beam, α  is a scaling parameter,  is the th-
order Bessel function of the first kind, and 

( )nJ ⋅ n

1 /c ω β=  is the phase velocity of the wave. It is clear that 
Bessel beams are single-frequency waves and are localized in transverse direction. The scaling 
parameter, α , determines the degree of localization. Because of this property, Bessel beams can be 
applied to medical ultrasonic imaging [15]-[21]. Bessel beams are further studied [22]-[30] along with 
the studies of acoustic transducers and ultrasound waves [127]-[130].  

B. Nonlinear Bessel Beams  

In medical imaging, nonlinear properties are important to provide additional information of diseased 
tissues. Harmonics of Bessel beams due to the tissue nonlinearity are useful to obtain higher quality 
images by combining the localized properties of limited-diffraction beams [22]-[23].  

C. “Frozen Waves”  

It is clear from (14) that, single-frequency Bessel beams have two free parameters. One is the order 
of the Bessel function and the other is the scaling parameter that changes the phase velocity of the 
Bessel beams. The order of the Bessel beams, , in n (14) has been exploited to produce various limited-
diffraction beams of different transverse beam profiles since 1995 [29]-[30]. Another parameter, the 
scaling parameter, α , in (14), has also been used for a linear superposition of Bessel beams to produce a 
beam of a desired axial profile [24]-[27] for zeroth-order Bessel beams. Although an annular array was 
used in the production of superposed Bessel beams in these studies, the number of annuli and the width 
of each ring are free to change. When the number of annuli approaches to infinity and the width of each 
ring shrinks to zero with a given circular aperture, the field distribution at the surface of the annular 
array is in fact a continuous function. In a more general way, one could use X wave transform [28], [46]-
[47] to produce a wave whose shape would be close to a desired one under conditions such as the least-
square criterion [131] by changing both the order of the beams and the scaling parameter.  

In 2004, Zamboni-Rached has developed an analytical relationship between the scaling parameter of 
Bessel beams and the axial beam profile along the beam axis ( =0) for the zeroth-order Bessel beams. 
The resulting linear superposition of Bessel beams of different scaling parameter, 

r
α , was called “Frozen 

Waves” [132]. The method was extended to include superposition over both the scaling parameter and 
the order of the Bessel beams [133] to better control the transverse beam profile of the “frozen waves”. 
These studies not only provide computationally efficient ways for beam designs, but also may have 
applications in optical tweezers [134].  
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D. X Waves  

If , 0( ) ( ) a kT k B k e−= ( ) n inA i e θθ = , 0 ( , ) sink ikα ζ ζ= − , ( , ) cosb k ikζ ζ= , and ( ) sf s e= , one 
obtains an n th-order X wave [41]-[53], which is a superposition of limited-diffraction portion of Axicon 
beams [135]-[136]:  

0 1

1

[ cos ( )]

0

( , ) ( , , )

( ) ( sin ) ,  ( 0,1, 2, )

n nX X

k a i z c tin
n

r t r z c t

e B k J kr e dk nζφ

φ

ζ
∞

− − −

Φ = Φ −

= =∫

G

"
, (15) 

where the subscript “ nX " means th-order X wave, n 1 / cosc c cζ= ≥  is both the phase and group 
velocity of the wave, / 2ζ π<  is the Axicon angle [136]-[137],  is a positive free parameter that 
determines the decaying speed of the high frequency components of the wave, and 

0a
( )B k  is an arbitrary 

well-behaved transfer function of a device (acoustic transducer or electromagnetic antenna) that 
produces the wave. Compare (15) with (14), it is easy to see the similarity and difference between a 
Bessel beam and X wave. X waves are multiple-frequency waves while Bessel beams have a single 
frequency. However, both waves have the same limited-diffraction property, i.e., they are propagation 
invariant. Because of multiple frequencies, X waves can be localized in both transverse space and time 
to form a tight wave packet. They can propagate in a free space or isotropic/homogeneous media 
without spreading or dispersion. Choosing specific ( )B k , one can obtain analytical X wave solutions 
[41]-[43]. One example is the zeroth-order ( =0 and n ( )B k = ) X wave 0a [42]:  

[ ]

0 0

0 1

1

[ cos ( )]
0 0

0

0
22

0 1

( , ) ( , , )

( sin )

( sin ) cos ( )

X X

k a i z c t

r t r z c t

a J kr e dk

a

r a i z c

ζ

φ

ζ

ζ ζ

∞
− − −

Φ = Φ −

=

=
+ − −

∫

G

t

)

. (16) 

E. Obtaining Limited-diffraction Beams with Variable Transformation  

If  is a solution to the ( -1)-dimensional isotropic/homogeneous wave equation, one 
can always obtain a limited-diffraction solution, 

1 1( ,N Nr t− −Φ
G N

( , )N Nr tΦ
G , to the -dimensional wave equation (see N

(1)) with the following variable substitutions [44]:  

1 1sin
cos

N N

N

r r
x t t

c

ζ
ζ

− −→⎧
⎪
⎨

− →⎪⎩

G G

 or 
1 1sin

cos
N N

N

r r
xt t

c

ζ
ζ

− −→⎧
⎪
⎨
− →⎪⎩

G G

,  (17) 

where ,  and  is an integer and 1 1 2 1( , , , )N Nr x x x− −=
G " 1 2( , , , )N Nr x x x=

G " 2N ≥ / 2ζ π<  is the Axicon 
angle [136]-[137] (for ,  is a vibration and not a wave, in this case, 1N = 1 1 0( , ) (N Nr t t− −Φ = Φ

G ) (17) and 
the procedure above work only when 0ζ = ). Because cos /Nx c tζ −  appears as a single variable in the 
following equation:  

1 1 1 1( , ) ( , ) ( sin , cos / )N N N N N N N Nr t r x c t r x c tζ ζ− − −Φ = Φ − = Φ
G G G

− ,  (18) 
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( , )N Nr tΦ
G  is a limited-diffraction beam propagating along the axis, Nx . As shown in [57]-[58], (17) is 

related to part of the Lorentz transformation (missing the transformation on Nx ) after dividing all 
variables by the same constant, sinζ :  

1 1

cos cos1 ( ) ( )
sin sin sin

n n

n n
n

r r
x xt t t
c c

ζ ζ βγ
ζ ζ ζ

− −→⎧
⎪
⎨ − = − = −⎪⎩

x t
c

→

G G

,  (19) 

where cos /v cβ ζ= =  and 
2

1 1
sin 1

γ
ζ β

= =
−

, and where 0 v c≤ <  is the velocity of the moving 

coordinates (observer) along the axis, Nx . Contrary to the report in [57]-[58], if 1 1( ,N Nr t− −Φ )G  is a 
solution to the ( -1)-dimensional isotropic/homogeneous wave equation,  will not be a 
solution to the -dimensional wave equation 

N ( , )N Nr tΦ
G

N (1) with the partial Lorentz transformation (19). Equation 
(17) has also been used in [59]-[60] to derive limited-diffraction beams in waveguides.  

F. Limited-diffraction Solutions to Klein-Gordon Equation  

An -dimensional Klein-Gordon Equation for a free relativistic particle is given by N [138]:  

2 2 2 2

2 2 2 2
1

1 ( , ) 0
N

N N
j j

m c r t
x c t=

⎡ ⎤∂ ∂
− − Φ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑ G

=
= ,  (20) 

where , ( 1, 2,..., )jx j = N

N

 represents rectangular coordinates in an -dimensional space,  is an 
integer,  is a scalar wave function of spatial variables, 

N 1N ≥

( , )N Nr tΦ
G

1 2( , , )Nr x x x=
G " , and time, ,  is the 

speed of light in vacuum, 
t c

/ 2h π== , where h  is the Plank constant, sinm m ζ′=  is the mass of the 
particle at rest, where  is a mass related constant and m′ / 2ζ π<  is the Axicon angle [136]-[137].  

Assuming  is a solution to the following ( -1)-dimensional Klein-Gordon Equation 
with a mass  

1 1( ,N Nr t− −Φ
G ) N

m′ [138]:  

2 2 2 21

1 12 2 2 2
1

1 ( , )
N

N N
j j

m c r t
x c t

−

− −
=

⎡ ⎤′∂ ∂
− − Φ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑ G

=
0=

N −

,  (21) 

where , 1 1 2 1( , , )Nr x x x− =
G " (18) is a solution to (20) after the variable substitution (17). This can be 

proved easily in a similar way as that in [44]. Using (18) and (21), we have:  

21

1 12
1

2 2 2
2

1 12 2 2

cos( sin , )

cos1sin ( sin , )

N
N

N N
j j

N
N N

xr t
x c

xm c r t
c t c

ζζ

ζζ ζ

−

− −
=

− −

⎡ ⎤∂
Φ −⎢ ⎥

∂⎢ ⎥⎣ ⎦
′⎡ ⎤∂

= + Φ⎢ ⎥∂⎣ ⎦

∑ G

G
=

−

 (22) 

and 
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2

1 12

2 2

1 12 2

cos( sin , )

coscos ( sin ,

N
N N

N

N
N N

xr t
x c

xr t
c t c

ζζ

ζζ ζ

− −

− −

∂
Φ −

∂

∂
= Φ

∂
)−

G

G
  (23) 

Summing both the left- and right-hand sides of (22) and (23), and comparing the results with (20), it is 
clear that (18) is a solution to (20). Limited-diffraction solutions to the Klein-Gordon Equation mean 
that a free relativistic particle may be accompanied by a rigidly propagating wave along the axis, Nx , at 
a velocity that is greater than the speed of light in vacuum in a manner similar to that of X waves [41]-

[43] (for 0ζ ≠ ). If / 2ζ π→ , the wave speed 1 cos
cc
ζ

= →∞ , then one has . For photons 

where =0, 

m′→ m

m (22) and (23) are the same as those in [44]. It is worth noting that from the proofs in (22)-
(23) and in [44], it is clear that the functions, sinζ  and cosζ , in (17) can be other functions as long as 
the summation of the squares of those functions is equal to one: 2 2

1 2( ) ( ) 1f fζ ζ+ ≡ , where 1( )f ζ  and 

2 ( )f ζ  are any well-behaved functions of ζ  or other free parameters. This extends the transformation 
formula in (17).  

In the following, we will obtain some localized limited-diffraction solutions to the Klein-Gordon 
Equation. Assuming ( ) sf s e=  in (4), where  is given by s (5), and inserting (4) into (20), one obtains 
the velocity of the wave:  

2 2
2 2

1 2
1

/
N

j N
j

m cc c D D
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ =

.  (24) 

If , 3N = 1x x= , 2x y= , and 3x z= , (24) becomes:  

2 2
2 2 2

1 1 2 3 2 /m cc c D D D D
⎛ ⎞

= + + −⎜ ⎟
⎝ ⎠=

2
3 .  (25) 

Choosing 1 0 cosD α θ=  and 2 0 sinD α θ= , where π θ π− ≤ ≤  is a free parameter and 0α  is a well-

behaved function of any free parameters, if 0 sinmciα ζ= −
=

, one obtains:  

                    ( ) ( )( )
2

2 22 2
3 0 11 / / 1 1 sin / /mc mcD i c c i c c

mc
α ζ

⎛ ⎞⎛ ⎞⎜ ⎟= − − = +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=
= = 1 1− .  (26) 

Since se  in (4) is a solution to the Klein-Gordon Equation (20), a linear superposition over the free 
parameter, θ , is still a solution:  

( )22
1 11 sin / / 1 ( )

1( , ) ( )
2

( sin ) ,  ( 0,1,2,

n

KG s
B

mci c c z c t
in

n

r t A e d

mce J r e n

π

π

ζ
φ

θ θ
π

ζ

−

⎛ ⎞+ − −⎜ ⎟
⎝ ⎠

Φ =

= =

∫

=

G

"
=

)

,  (27) 
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where the subscript “ nB ” and the superscript “ ” mean th-order Bessel beam and the Klein-Gordon 
Equation, respectively, and 

KG n
( )( )22

11 sin / / 1
mc

i cζ+= c −  is the propagation constant. Equation (27) is a localized 

solution to (20) and its localization increases with the mass, . For electron at rest, , 
and thus  (  and ). The wave in 

m 319.1 10 kgm −= ×
12 1/ 2.6 10 mmc −= ×= 341.05 10 J s−= × ⋅= 83.0 10 m / sc = × (27) is localized 

in pico-meter scale if sin 1ζ ≈ . There are other choices of 0α . If 0α  is a constant, a localized limited-
diffraction solution that has a fixed transverse beam profile can be obtained. If 0 ( / )sini mvα γ ζ= − = , 

where 21/ 1γ β= −  and /v cβ =  and where v  is the velocity of the particle, the transverse localization 
of the solutions will increase with the speed of the particle. In this case, the propagation constant is 
given by: ( ) ( )( )2 22

11 / sin / / 1
mc

i v c c cγ ζ+ −= .  

Superposing  in ( , )
n

KG
B r tΦ
G (27) over the mass, , one obtains a composed wave function that is 

similar to the X wave 
m

[41]-[53], but may not necessary be a solution to (20) where  is a constant for a 
given particle (the physical meaning could be a group of independent particles of different masses 
traveling in space). Using 

m

(7) and (27), and letting , where 0( ) ( ) a kT k B k e−= /k mc= = , one obtains:  

( )22
0 1 1

1

1 sin / / 1 ( )

0

( , ) ( , , )

( ) ( sin )

( 0,1,2, )

n n

KG KG
X X

mc a i c c z c t
in

n

r t r z c t

c mc mce B J r e dm

n

ζ
φ

φ

ζ
⎡ ⎤⎛ ⎞∞ − − + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Φ = Φ −

=

=

∫ =

G

= = =
"

,(28) 

where the subscript “ nX ” means th-order X wave, the superscript “ ” represents Klein-Gordon 
Equation,  is a positive free parameter, and 

n KG

0a ( )B k  is an arbitrary well-behaved transfer function. If 
=0 and n ( )B k = , from 0a (28) and (16) one has (where  is a constant) 1c [42]:  

( )( )

0 0 1

0
2

22 2
0 1

( , ) ( , , )

( sin ) 1 sin / / 1 ( )

KG KG
X Xr t r z c t

a

r a i c c z c

φ

ζ ζ

Φ = Φ −

=

1t
⎡ ⎤+ − + − −⎢ ⎥⎣ ⎦

G

.(29) 

It is clear from (26)-(29) that, if , the solutions or functions are no longer waves. If 1c c< 1c c= ,  
in 

3D
(26) is infinity. For , one obtains rigidly propagating superluminal waves or functions as in the 

case of X waves 
1c c>

[42]. One example is to assume 1 / cosc c ζ=  as given in (17) [44]. A superposition that 
is similar to (28) can also be done over the velocity, , instead of the mass, m , of a particle if, say, v

0 ( / )sini mvα γ ζ= − = . In this case, the superposition is a limited-diffraction solution to the Klein-
Gordon Equation (20).  

G. Limited-diffraction Solutions to Schrodinger Equation  
The general nonrelativistic, time-dependent, and three-dimensional Schrodinger wave equation for 

multiple particles is given by (see e.g., [139]):  

2
2

1 2

M

j
j j

V i
m t=

∂Φ
− ∇ Φ + Φ =

∂∑ = = ,  (30) 
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where 1 2 3 3 2 3 1 3( , , ; ; , , ; )M M Mx x x x x x t− −Φ = Φ …  is the wave function (related to the probability of finding 
particles in space and time) and  is the potential of the system. 1 2 3 3 2 3 1 3( , , ; ; , , ; )M M MV V x x x x x x t− −= … Φ  
and  are determined by all the particles and their interactions. V 2

j∇  is the Laplace in terms of the 

position of the j th particle in space, ( )3 2 3 1 3, ,j j jr x x x− −=
G

j , where 1, 2, ,j M" , = M  is an integer. jm  is 
the mass at rest of the j th particle. Assuming that V  is not a function of spatial variables and time, and 

( ) ss eΦ = , where  is given by s (5), one obtains [54]:  

2
2 2 2
3 2 3 1 3

1
1

3

2

M

j j j
j j

M

D D D
m

c
i D

− −
=

− ⎡ ⎤ V+ + +⎣ ⎦
=

−

∑ =

=
.  (31) 

If 1M = , 1x x= , 2x y= , 3x z= , 1m m= , 1 0 cosD α θ= , and 2 0 sinD α θ= , where / 2ζ π<  is an 
Axicon angle, π θ π− ≤ ≤  is a free parameter, and 0α  is a well-behaved function of any free parameters, 
(31) is simplified [54]:  

( )
2

2 2
0 3

1
3

2
D V

mc
i D

α− + +
=

−

=

=
.  (32) 

If  and 0V = 0 sinmciα ζ= −
=

, one has:  

         
( ) ( )( )2

2 22 2
1 1 0 1 1 02 2

3

1 0

/ / / / sin ,

2 ( / ),

mc mci c c c c i c c c c
m cD

mci c c

α ζ

α

⎧ ⎛ ⎞
⎪ ± + = ± −⎜ ⎟⎜ ⎟⎪ ⎝ ⎠= ⎨
⎪

=⎪⎩

=
= =

=

0

0

α ≠
.  (33) 

Following the steps to obtain (27), one obtains a localized solution to the Schrodinger Equation in 
(30) under the conditions leading to (33) [54]:  

( )2 2
1 1 1/ / sin ( )

1( , ) ( )
2

( sin ) ,  ( 0,1,2,

n

S s
B

mci c c c c z c t
in

n

r t A e d

mce J r e n

π

π

ζ
φ

θ θ
π

ζ

−

⎛ ⎞± − −⎜ ⎟
⎝ ⎠

Φ =

= =

∫

=

G

"
=

)

,  (34) 

where the subscript “ nB ” and the superscript “ ” mean th-order Bessel beam and the Schrodinger 
Equation, respectively, and 

S n
( )( )2 2

1 1/ / sin
mc

i c c c c ζ± −=  is the propagation constant. Similar to the Klein-Gordon 
Equation (see the text below (27)), one can select 0α =constant, 0 ( / )sini mvα γ ζ= − = , or other 
functions to obtain more limited-diffraction beams (the corresponding  can be easily obtained by 
inserting different 

3D

0α  into (33)).  
Following the derivations of (28) and substituting ( )( )22

11 sin / / 1
mc

c cζ+ −=  with ( )( )2 2
1 1/ / sin

mc
c c c c ζ± −= , one 

obtains a function that is similar to the X wave [41]-[53], but may not necessary be a solution to (30) 
(the physical meaning could be a group of independent particles of different masses traveling in space):  
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( )2 2
0 1 1 1

1

/ / sin ( )

0

( , ) ( , , )

( ) ( sin )

( 0,1,2, )

n n

S S
X X

mc a i c c c c z c t
in

n

r t r z c t

c mc mce B J r e dm

n

ζ
φ

φ

ζ
⎡ ⎤⎛ ⎞∞ − − ± − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Φ = Φ −

=

=

∫ =

= = =
"

G

,(35) 

where the subscript “ nX ” means th-order X wave, the superscript “ ” represents Schrodinger 
Equation,  is a positive free parameter, and 

n S

0a ( )B k  is an arbitrary well-behaved transfer function. If 
=0 and n ( )B k = , from 0a (35) and (16) one obtains (where  is a constant) 1c [42]:  

( )( )

0 0 1

0
2

22 2
0 1 1 1

( , ) ( , , )

( sin ) / / sin ( )

S S
X Xr t r z c t

a

r a i c c c c z c

φ

ζ ζ

Φ = Φ −

=

t⎡ ⎤+ − ± − −⎢ ⎥⎣ ⎦

G

.(36) 

In (33)-(36), if ( ) , the solutions or functions are unbounded for some  or t  and 

may not be of interest. If , one obtains limited-diffraction solutions or functions 

2 2
1 / sinc c ζ− < 0

0

z

( )2 2
1 / sinc c ζ− ≥ [42]. 

One example is to assume 1 / cosc c ζ=  as given in (17) [44]. A superposition that is similar to (35) can 
also be done over the velocity, , instead of the mass, , of a particle if, say, v m 0 ( / ) sini mvα γ ζ= − = . In 
this case, the superposition is a limited-diffraction solution to the Schrodinger Equation (30).  

H. Electromagnetic X Waves  
The free-space Maxwell’s equations are given by [140]:  

0

0

0
0

HE
t

EH
t

E
H

μ

ε

⎧ ∂
∇× = −⎪ ∂⎪
⎪ ∂
∇× =⎨

∂⎪
⎪ ∇ ⋅ =
⎪ ∇ ⋅ =⎩

GG

GG

G
G

,  (37) 

where E
G

 is the electric field strength, H
G

 is the magnetic field strength, 0ε  is the dielectric constant of 

free space ( 9
0 10 F/m

36
πε −≈ × ), 0μ  is the magnetic permeability of free space ( ), and 

 is the time.  

7
0 4 10 H/mμ π −= ×

t
Because of the 3rd equation of (37), the electric field strength can be written [54], [141]:  

0 mE
t

μ ∂
= − ∇×∏

∂

GG
,  (38) 

where  is a magnetic Hertz vector potential with transverse electrical (TE) polarization, where 
 is a scalar function, and  represents a unit vector. Inserting 

0
m n∏ =Φ
G G

Φ 0nG (38) into the 1st equation of (37), one 
obtains:  
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( )mH = ∇× ∇×∏
GG

.  (39) 

From (37) to (39), one obtains the following vector wave equation:  

2
2

2 2

1 0m
m c t

∂ ∏
∇ ∏ − =

∂

GG
.  (40) 

Let , where  is a unit vector along the -axis and use the cylindrical coordinates, from 0n z=
G G

0 0zG z (38) 
and (39) one obtains:  

2 2
0 0

0 0
1E r
r t t r

μ μ φ
φ

∂ Φ ∂ Φ
= − +

∂ ∂ ∂ ∂

GG G   (41) 

and 

2 2 2 2
0 0

2 2 2

1 1H r
r z r z z c t

φ
φ

⎛ ⎞∂ Φ ∂ Φ ∂ Φ ∂ Φ
= + + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

0z
GG G G ,  (42) 

respectively, where  is a solution to the free-space scalar wave equation Φ (2), and where  and 0rG 0φ
G

 are 
the unit vectors along the variables, r  and φ , respectively. Once a solution to (2) is found, the electrical 
field strength, E

G
, and the magnetic field strength, H

G
, can be obtained from Eqs. (41) and (42), 

respectively.  
If  is an n th-order broadband X wave solution or a general X wave solution (see Φ (15)) to (2), the 

components of E
G

 and H
G

 are also X wave type of functions [54]. From the E
G

 and H
G

 expressions, the 
Poynting energy flux vector and the energy density can be derived [54]. The solution of E

G
 and H

G
 

obtained this way will be limited-diffraction solutions to the Maxwell’s equations in (37) [54].  

I. Limited-diffraction Beams in Confined Spaces  
Limited-diffraction beams in confined spaces are of interest [59]-[60], [142]. Previously, Shaarawi et 

al. [143] and Ziolkowski et al. [144] have shown that the “localized waves” such as Focused Wave 
Modes and Modified Power Spectrum Pulses, etc., can also propagate in waveguides for an extended 
propagation depth. In the following, theoretical results of X waves propagating in a confined space such 
as a waveguide will be developed for acoustics, electromagnetics, and quantum mechanics [142].  

1. Acoustic Waves: Assuming that Φ  in (2) represents acoustic pressure in an infinitely long 
cylindrical acoustical waveguide (radius ), which is filled with an isotropic/homogeneous lossless fluid 
medium enclosed in an infinitely rigid boundary. In this case, the normal vibration velocity of the 
medium at the wall of the cylindrical waveguide is zero for all the frequency components of the X 

waves, i.e., 

a

( , ; ) 0
nX r t

r
ω∂

Φ ≡
∂

G , 0ω∀ ≥  at 0r = , where ( , ; )
nX r t ωΦ
G  is the X wave component at the 

angular frequency, ω  (see (15)). To meet this boundary condition, the parameter, , in k (15) is 
quantized:  

, ( , 0,1,2, )
sin

nj
njk n j

a
μ

ζ
= = " , (43) 

where njμ  are the roots of the equations:  
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1

1 1

( ) 0, 0
( ) ( ), 1,2,n n

J x n
J x J x n− +

= =⎧
⎨ = =⎩ "

. (44) 

Thus, the integral in (15) can be changed to a series representing frequency quantized X waves [142]:  

[ ]0 1cos ( )

0

( , ) ( ) ( sin ) ,  ,

( 0,1,2, )

nj

n

k a i z c tin
X nj nj n nj

j

r t e k B k J k r e r a

n

ζφ ζ
∞

− − −

=

Φ = Δ ≤

=

∑G

"
, (45) 
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1n )where  and . Unlike conventional guided waves, the frequency 
quantized X waves contain multiple frequencies and propagate through waveguides at the speed of  
without dispersion. It is noticed that similar results can also be obtained for waveguides of other 
homogeneous boundary conditions. For an infinitely long cylindrical acoustical waveguide consisting of 
isotropic/homogeneous lossless media in a free space (vacuum) with a radius a , the acoustical pressure 
is zero at the boundary of the waveguide, 

0nk kΔ = 1  ( 1, 2,3,nj nj njk k k j+Δ = − = "

1c

r a= , i.e., , ( , 1, 2,3, )nj n jμ = " , in (43) are roots of 
. See Figs. 1 to 3 for an example of X waves in an acoustic waveguide ( )=0, ( 1,2, )nJ x j = " [142].  

It is clear that if , 0n = (45) represents an axially symmetric frequency quantized X wave. If , 
then  and the summation in 

a →∞
0njkΔ → (45) becomes an integration that represents the X waves in (15). 

On the other hand, if , both  and 0a → njk ( , 0,1, 2, )njk n jΔ →∞ = " . This means that for a small 
waveguide, only high frequency quantized X waves can propagate through it.  

2. Electromagnetic Waves: The free-space vector wave equations from the free-space Maxwell’s 
equations (37) are given by [145]:  

2
2

2 2

1 0EE
c t

∂
∇ − =

∂

GG
, (46) 

and 

2
2

2 2

1 0HH
c t

∂
∇ − =

∂

GG
. (47) 

A solution to (46) can be written as:  

( , ) ( , ) z i tE r t E r eγ ωφ −
⊥=

G GG , (48) 

where iγ β=  is a propagation constant, 2 2 0ck kβ = − >  (for propagation waves), /k cω=  is the wave 

number, and ( , )E r φ⊥

G
 is a solution of the transverse vector Helmholtz equation:  

2( , ) ( , ) 0cE r k E rφ φ⊥ ⊥ ⊥∇ +
G G

=

z

, (49) 

where  is the transverse Laplace operator and  is a parameter that is independent of ⊥∇ ck ,  ,  r φ , and t . 

For transverse magnetic (TM) waves, 0( , ) ( , )zE r E r zφ φ⊥ =
G G  and (49) becomes a scalar Helmholtz 

equation of ( , )zE r φ , where  is a unit vector along the -axis.  0zG z

If sinck k ζ=  where / 2ζ π<  is a constant, after taking into consideration of the exponential term 
in (48) and integrating the solution of (49) from 0 to ∞  over , one obtains an n th-order X wave k



solution (replace the symbol, , in ( , )
nX r tΦ
G (15) with ( , )

nXzE r tG , where the subscript “X” means X wave). 
Assuming that electromagnetic X waves travel in vacuum in a totally conductive cylindrical waveguide 
of a radius, a , (i.e.,  at ( , ) 0

nXzE r t ≡
G r a= ), similar to the frequency quantization procedure of the 

acoustic case (45), one obtains [142]:  

[ ]0 1cos ( )

0

( , ) ( ) ( sin ) ,  ,

( 0,  1,  2,  ...)

nj

nX

k a i z c tin
z nj nj n nj

j

E r t e k B k J k r e r a

n

ζφ ζ
∞

− − −

=

= Δ ≤

=

∑G
, (50) 

where  are given by  ( ,k n 0,1, 2, )nj j = " (43), and ( , 0,1, 2, )nj n jμ = "  in (43) are roots of 

. Other components of (x)=0 ( 0,1,2, )nJ n = " E
G

 and H
G

, can be derived from  using the free-
space Maxwell’s equations 

( , )zE r tG

(37). They will have the same speed, , as . For transverse electric (TE) 
waves, results are similar.  

1c zE

3. DeBroglie Waves: With a finite transverse spatial extension (such as a free particle passing 
through a hole of a finite aperture), the function ( , )

n

KG
X r tΦ
G  in (28) or ( , )

n

S
X r tΦ
G  in (35) would change 

(spread or diffract) after certain distance behind the hole. However, in the cases such as particles passing 
through a pipe,  and  need to meet the boundary conditions that they are zero on the 
wall of the pipe. This gives the following quantized X wave functions corresponding to 

( , )
n

KG
X r tΦ
G ( , )

n

S
X r tΦ
G

(28) and (35) 
respectively [142],  

                       
( )22

0 1 11 sin / / 1 ( )

0
( , ) ( ) ( sin ) ,  ,

( 0,  1,  2,  ...)

nj

n

k a i c c z c t
KG in
X nj nj n nj

j
r t e k B k J k r e r a

n

ζ
φ ζ

⎡ ⎤⎛ ⎞∞ − − + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

Φ = Δ ≤

=

∑G
, (51) 

and  

                       
( )2 2

0 1 1 1/ / sin ( )

0

( , ) ( ) ( sin ) ,  ,

( 0,  1,  2,  ...)

nj

n

k a i c c c c z c t
S in
X nj nj n nj

j

r t e k B k J k r e r a

n

ζ
φ ζ

⎡ ⎤⎛ ⎞∞ − − ± − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

Φ = Δ ≤

=

∑G
, (52) 

where  are given by /  ( , 0,1, 2, )nj njk m c n j= == " (43), and ( , 0,1, 2, )nj n jμ = "  in (43) are roots of 
. (x)=0 ( 0,1,2, )nJ n = " (51) and (52) represent particles in a confined space with their quantized de 

Broglie’s waves. The quantization may only allow particles of certain mass to pass through the pipe 
(waveguide). As mentioned in the text below (27) and (34), the free parameter 0α  can be chosen 
differently. If 0 ( / )sini mvα γ ζ= − = , the quantization in (51) and (52) may be modified for summation 
over the velocity v , instead of , of the particles. In this case, only particles with certain velocities are 
allowed to pass through the pipe or a small nanotube.  

m

There are other implications of the studies above. As we know, light in free space behaves like a 
wave, but acts as particles (photons) when interacts with materials. Some microscopic structures of 
materials could be considered as optical waveguides within which the light waves are confined. From 
the above discussion of the X waves in confined spaces, it is understood that only the light waves that 
have a higher energy (or frequency) can penetrate these materials or to cause interactions.  

J. X Wave Transformation  
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Because X waves are orthogonal [61], similar to plane waves, any physically realizable waves or 
well-behaved solutions to the wave equation can be expressed as a linear superposition of X waves 
(inverse X wave transform) and the coefficients of the superposition can be determined (forward X wave 
transform) [46]-[47]. The inverse X wave transform is given by (Eq. (15) of [46]):  

, ,

1

,

/ 2

, 1
0 0

/ 2
cos ( )

,
0 0

/ 2

1
0

( , ) ( ) ( , , )

( ) ( sin )

( , , )

n k

n

n A
n

ik z c tin
n n

n

X
n

r t d dkT k r z c t

e T k J kr e dk d

r z c t d

ζ

ζ

π

ζ

π
ζφ

ζ

π

ζ φ

ζ ζ

φ ζ

∞∞

=−∞

∞∞
−

=−∞

∞

=−∞

Φ = Φ −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

= Φ −

∑ ∫ ∫

∑ ∫ ∫

∑ ∫

G

, (53) 

where  

0
, ,( ) ( ) ka

n nT k B k eζ ζ
−= , (54) 

and  

1

, ,

cos ( )
1( , , ) ( sin )

n k

ik z c tin
A nr z c t e J kr e

ζ

ζφφ ζ −Φ − = , (55) 

where 1 / cosc c ζ=  and / 2ζ π< .  
The forward X wave transform can be used to determine the coefficients (Eq. (26) of [46]):  

, ,

2

, 2

*
1

0

sin cos ( )( )
(2 )

( , , , ) ( , , )
n k

n

A

k c H kT k

rdr d dt r z t r z c t
ζ

ζ

π

π

ζ ζ
π

φ φ φ
∞ ∞

− −∞

=

× Φ Φ∫ ∫ ∫ −
, (56) 

where  

1

, ,

cos ( )*
1( , , ) ( sin )

n k

ik z c tin
A nr z c t e J kr e

ζ

ζφφ ζ − −−Φ − =  (57) 

is a complex conjugate of 
, , 1( , , )

n kA r z c t
ζ

φΦ −  and ( )H k  is the Heaviside step function [146]:  

1, 0
( )

0, Otherwise
k

H k
≥⎧

= ⎨
⎩

.  (58) 

( )H k  is used to indicate that  is positive and thus it can be placed at either side of k (56).  

K. Bowtie Limited-diffraction Beams  

If =  is a limited-diffraction solution to the isotropic/homogeneous wave 
equation 

( , )N Nr tΦ
G

1( ,N N Nr x c t−Φ −
G

1 )
(1), the Klein-Gordon Equation (20), or the Schrodinger Equation (30) (assuming that V  is not 

a function of the corresponding component of 1Nr −
G ), where 1 2( , , )N Nr x x x=

G " , ,  
is an integer, and  is the speed of the wave, any partial derivatives of 

1 1 2 1( , , )N Nx− −r x x=
G "

1 )
N

1c 1( ,N N Nr x c t−Φ −
G  along any 

component of  are still limited-diffraction solutions to these equations 1Nr −
G [147]-[151]. These solutions 
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1 )

1 )

are called bowtie beams because their transverse beam shapes are similar to a bowtie. These beams may 
have applications in medical imaging of a lower sidelobe because one part of sidelobe of a transmission 
beam may be used to cancel the other part of sidelobe of a reception beam [147]-[151]. (Note, the 
following properties are also true. Any partial derivatives of a limited-diffraction solution, 

, in terms of the time, t , will also be a limited-diffraction solution to 1( ,N N Nr x c t−Φ −
G (1), (20), and (30)

, respectively. One example is the 2nd derivative X wave in terms of time given in [44]. Replacing  with 
- t  in , one obtains a time reversal mirror limited-diffraction wave propagating in a 
backward direction along 

t
1( ,N N Nr x c t−Φ −

G

Nx .)  

L. Limited-diffraction Array Beams  

If the partial derivatives are carried out on more than one components of  for 
= , limited-diffraction grid or layered array beams may be produce for 

equations 

1 1 2 1( , , )N Nr x x x− −=
G "

( , )N Nr tG
1 )Φ 1( ,N N Nr x c t−Φ −

G

(1), (20), and (30) (assuming that V  is not a function of the corresponding components of 
) 1Nr −

G [152]-[155]. Array beams may have applications to 3D imaging [152], blood flow velocity 
measurements [153], and high frame rate imaging [62]-[63], [78]-[79].  

M. Computation with Limited-diffraction Beams  

Efficient computation of limited-diffraction beams produced by a finite aperture is important for 
understanding the properties of these beams. A Fourier-Bessel method [24]-[28] has been used to 
calculate arbitrary waves of axial symmetry. Limited-diffraction array beams [152]-[155] have been 
used for efficient computation of waves produced by a 2D array transducer [154]-[155]. Angular 
spectrum decomposition has been used for the study [156] and various methods have been investigated 
[157].  

 

III. APPLICATIONS OF LIMITED-DIFFRACTION BEAMS  

A. Medical Ultrasound Imaging  

Limited-diffraction beams are localized waves and are, in theory, propagation invariant. In practice, 
because the dimension of wave sources is always finite, these waves will eventually diffract. However, 
these waves have a large depth of field, meaning that they will propagate over a large distance without 
spreading. This property is useful in medical ultrasound imaging where an extended depth of focus is 
needed to provide clear images over the entire depth of interest within the thickness of the human body. 
Studies on this subject have been reported, for example, in the literatures [15]-[17], [158]-[163].  

B. Tissue Characterization (Identification)  

Due to the large depth of field of limited-diffraction beams, these beams may be used for tissue 
characterization (identification) [164]-[166]. For example, different tissues have different attenuations 
on ultrasound waves. If the waves diffract as they propagate, such as conventional focused waves, one 
has to compensate for the diffraction effects of the waves in the estimation of tissue attenuation. The 
compensation process could be computationally intensive and tedious. An example of tissue 
characterization with limited-diffraction beams is given in [166].  

C. High Frame Rate Imaging  

High frame rate 2D and 3D ultrasound imaging is important for visualizing fast moving objects such 
as the heart. Based on our previous studies of ultrasound diffraction tomography [167]-[171] and 
limited-diffraction beams such as X waves [41]-[53], we have developed the high frame rate imaging 
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method [62]-[83]. Recently, the method has been extended to include steered plane wave and limited-
diffraction array-beam transmissions [78]-[80].  

D. Two-Way Dynamic Focusing  

A two-way dynamic focusing method was developed by transmitting limited-diffraction array beams 
and receiving ultrasound echo signals with array beam weightings of the same parameters. This method 
increases image field of view and image resolution due to enlarged coverage of spatial Fourier domain 
[172].  

E. Medical Blood Flow Measurements  

Blood flow velocity measurements and imaging are important for medical diagnoses [173]-[174]. 
However, with conventional Doppler method, only flow velocity that is along the ultrasound beam can 
be measured. To measure velocity vector, both the velocity components that are along with and 
transverse to the beam are needed. Limited-diffraction beams may help to measure the transverse 
component of the velocity more accurately due to their spatial modulation properties [153], [175]-[176].  

F. Nondestructive Evaluation (NDE) of Materials   

Nondestructive evaluation (NDE) is important for many applications such as finding defects in 
aircraft engines with ultrasound without slicing them apart or destroying them. Similar to medical 
imaging, limited-diffraction beams can also be applied to NDE on various industrial materials by getting 
images of a large depth of field [177]-[178].  

G. Optical Coherent Tomography  

Optical coherent tomography (OCT) uses the same principle of conventional ultrasound pulse-echo 
imaging. It is able to obtain microscopic images of a cross-section along an optical beam. Similar to 
ultrasound imaging, limited-diffraction beams can be applied to increase the depth of field of OCT 
[179].  

H. Optical Communications  

Limited-diffraction beams such as X waves [41]-[43] are orthogonal in space. Because of this 
property, signals such as television (TV) programs in different channels can be sent over the same space 
from the same channel (carrier frequency). Limited-diffraction beams have been exploited to increase 
the capacity in communications using the property of their spatial orthogonality [180]-[181].  

I. Reduction of Sidelobes in Medical Imaging  

Limited-diffraction beams can maintain a high resolution in medical imaging over a large depth of 
field. However, compared to focused beams at their focuses, limited-diffraction beams have a higher 
sidelobe. Sidelobes may lower image contrast in ultrasound imaging, making the differentiation between 
benign and malignant tissues difficult. Various methods have been developed to reduce sidelobes of 
limited-diffraction beam in medical imaging [5], [182]-[185].  

 

IV. CONCLUSION  

Limited-diffraction beams are a class of waves that may be localized in both space and time and can 
propagate rigidly in a free space or confined spaces to an infinite distance in theory at a superluminal 
speed. Because of the localized property and the fact that they are solutions to various wave equations, 
limited-diffraction beams may provide an insight into various physical phenomena and may have 
theoretical significances. In addition, limited-diffraction beams can be approximately produced with a 
finite aperture and energy over a large depth of field, meaning that they can keep a small beam width 
over a large distance. This and other properties of limited-diffraction beams make them suitable for 
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various applications such as medical imaging, tissue characterization, blood flow measurement, 
nondestructive evaluation of materials, and optical communications, etc.  
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FIGURES AND LEGENGS  
 
 

 
 

Fig. 1. Envelope detected Zeroth-order X Wave in a 50 
mm diameter rigid acoustic waveguide. The waves shown 
has an Axicon angle of 4o and  = 0.05 mm. (a) and (c) 
Band-limited version with a Blackman window function 
centered at 3.5MHz with about 81% of fractional -6dB 
bandwidth. (b) and (d) are a broadband version. The 
images in the top row are in a linear scale and those in the 
bottom row have a log scale to show the sidelobes.  
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Fig. 2. The same as those in Fig. 1. except that the images 
are zoomed horizontally around the center.  
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Fig. 3. Transverse ((1) and (3)) and axial ((2) and (4)) 
sidelobe plots of the images in Fig. 1. ((1) and (2)) and 
Fig. 2. ((3) and (4)), respectively. Solid and dotted lines 
are for band-limited and broadband cases, respectively.  
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