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Abstract – A method to greatly simplify the high-frame-rate 
(HFR) imaging system using a rotation of coordinates in image 
reconstruction was developed. A theory of Fourier image 
reconstruction was also developed and both in vitro (on an 
ATS539 tissue-mimicking phantom) and in vivo (on a human 
heart) experiments were performed to verify the theory.  
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I.  INTRODUCTION  
Based on the limited-diffraction beam theory [1]-[4], a 

high-frame-rate (HFR) imaging method for two-dimensional 
(2D) and three-dimensional (3D) imaging was developed in 
1997 [5]-[9] and has been extended recently to explicitly 
include limited-diffraction array beam and steered plane wave 
transmissions to increase image field of view and to achieve 
equivalent dynamic focusing in both transmission and 
reception [10]-[19]. This method has the advantage that it could 
be implemented with simpler hardware than the conventional 
delay-and-sum (D&S) method [20] because the limited-
diffraction array beam transmissions [21]-[23] can be 
approximated with square-wave aperture weightings [10] and 
the fast Fourier transform (FFT) can be used to reconstruct 
images. The method can also use multiple steered plane waves 
[5], [24]-[25].  

In this paper, the HFR imaging method is further simplified 
using rotated Cartesian coordinates in which one of the rotated 
axes coincides with the transmission wave vector that 
corresponds to the central frequency of a 2D array transducer. 
A new mathematical relationship between the Fourier 
transform of a 3D object function and the limited-diffraction 
array beam weightings or 2D Fourier transform over the 
transducer aperture is developed. Images are reconstructed for 
various transmission wave vectors, rotated back, and then 
summed coherently (to obtain a high resolution, contrast, and 
large field of view) in the original coordinates to form the final 
image at a high frame rate. The summation could also be done 
incoherently to reduce speckles. With this method, the 
unnecessary high spatial-frequency components, which are 
produced by the off-axis transmit wave vectors, of the echo 
signals over the transducer aperture are greatly reduced. This 
allows the use of a larger sampling interval in the Fourier 
space, reducing the number of points in the fast Fourier 
transform (FFT) and the memory usage. In addition, a depth-
dependent spatial filter can be more easily applied to increase 
signal-to-noise ratio by matching the filter bandwidth with the 
transverse spatial bandwidth of echo signals over depths (i.e., 
smaller spatial bandwidth at larger depths).  

To verify the method, a home-made general-purpose high-
frame rate imaging system [10], [26]-[27] was used to acquire 
radiofrequency (RF) echo signals from an ATS539 tissue-
mimicking phantom (ATS Laboratory, Inc) and a human heart. 
In the experiments, a 2.5-MHz center frequency, 128-element, 
and 19.2-mm aperture broadband phased-array transducer was 
used to obtain 2D images over a +/-45-degree field of view. 
The echo signals were digitized to 12 bits at 40 MHz. Results 
show that the method can greatly reduce the number of points 
required in the FFT operations while maintaining the quality of 
the reconstructed images.  

II. THEORY  
The details of the theory of the HFR imaging method are 

given in [10] and thus will not be repeated here. With the X-
wave formulas [1]-[4], one obtains a relationship between the 
Fourier transform of an object function and the RF echo signals 
as follows [10]:  
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where , ( )
x x y yR T R T

k k k kR ω+ +  is the Fourier transform of the time-

varying RF echo signal when the transducer receive aperture is 
weighted at the spatial frequencies 

Rxk  and
Ryk , 

[ ]0 0 0 0, , tr x y z=  and [ ]2 2 2 2, , tr x y z=  are the original and 

rotated coordinates, respectively (rotating angles are Tζ  and 

Tθ  in Fig. 1), the superscript, t , means a transpose of a vector 
or matrix, ( / ) {1,  0;  0,  0}H cω ω ω= ≥ <  is the 
Heaviside step function [28], ( )A k  and ( )T k  are the 
transmit and receive transfer functions, respectively [29], 

/k cω=  is the wave number, where 2 fω π=  is the 
angular frequency, and f  is the temporal frequency, c  is the 
speed of sound, ( )f ⋅  and ( )F ⋅  are a 3D object function and 
its Fourier transform, respectively, V  is the volume of the 
object. ' ( )F ⋅  is the Fourier transform of ( )f ⋅  at the rotated 
coordinates.  
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Figure 1.  Coordinates before ( 0r ) and after rotation ( 2r ).  

 

The transmission and reception wave vectors are given by: 

( , , )
T T T

T
x y zK k k k=  and ( , , )

R R R

R
x y zK k k k= , 

respectively, where 2 2 2
T T Tz x yk k k k= − −  and 

2 2 2
R R Rz x yk k k k= − − .  

The rotation matrix and its inversion are given by:  
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respectively.  

If a point in the coordinates before and after the rotation is 

given by 0 0 0 0 0 0 0r x i y j z k= + +  and 

2 2 2 2 2 2 2r x i y j z k= + + , respectively, one has: 0 2r r= Θ  and 

1
2 0r r−= Θ . In addition, one obtains: 

2 2 22 ( , , ) (0, 0, )
T T T

T T
x y zK k k k K k= = Θ =  and 

2 2 22 ( , , )
R R R

R R
x y zK k k k K= = Θ  for the transmit and receive wave 

vectors in the rotated coordinates (assuming the transmit wave 

vector is aligned with a rotated axis), respectively, where 

2 2 2

2 2 2
T T Tz x yk k k k= − −  and 

2 2 2

2 2 2
R R Rz x yk k k k= − − .  

From the formulas above (Eq. (1)), it is clear that the 
relationship between the Fourier transform, 

2 2 2

' ( , , )
R R Rx y zF k k k k+ , of an object function, 0( )f r , and 

the Fourier transform of received RF echo signals (can be 
easily rotated by linear phase delays) in the rotated coordinates 
is exactly the same as Equation (15) of [5], which is simpler to 
implement than that in the original coordinates.  

III. EXPERIMENTS AND RESULTS  
To verify the method and the formulas above, both in vivo 

and in vitro experiments were performed with a home-made 
HFR imaging system [10], [26]-[27]. The system has 128-
channels to drive a 2.5-MHz broadband phase array transducer 
of 128 elements. RF echoes were digitized to 12 bits at 40 MHz 
and were used for image reconstructions.  

Fig. 2 is a reconstructed strip of image of an ATS539 
tissue-mimicking phantom with a single transmission steered at 
-45º. After a rotation of the echo signals, the strip of image 
reconstructed with Eq. (1) is steered at 0º in the rotated 
coordinates (see Fig. 3). It is clear that the images reconstructed 
before and after the rotation are similar.  

Figs. 4 and 5 are images reconstructed with and without the 
rotation of coordinates for an ATS539 tissue-mimicking 
phantom. Figs. 6 and 7 are images reconstructed with and 
without the rotation of coordinates for a human heart in vivo. 
The image frame rate is about 486 per second (187 µs between 
transmissions). The sizes of images in Figs. 2-7 are 153.6 mm 
in width and 120 mm in depth.  
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Figure 2.  A strip of reconstructed iamge of an ATS539 tissue-mimicking 
phantom with one transmission steered at -45º without coordinate rotation 
using Eq. (1) (see Reference [10] for details of image reconstructions).  

 

 

Figure 3.  A strip of reconstructed iamge of an ATS539 tissue-mimicking 
phantom with one transmission steered at -45º with coordinate rotation 
using Eq. (1) (see Reference [10] for details of image reconstructions).  

 

 

Figure 4.  Reconstructed iamge of an ATS539 tissue-mimicking phantom 
with 11 transmissions steered from -45º to 45º without coordinate rotation 
using Eq. (1) (see Reference [10] for details of image reconstructions).  

 

 

Figure 5.  Reconstructed iamge of an ATS539 tissue-mimicking phantom 
with 11 transmissions steered from -45º to 45º with coordinate rotation 
using Eq. (1) (see Reference [10] for details of image reconstructions).  

 

 

Figure 6.  Reconstructed iamge of a human heart in vivo with 11 
transmissions steered from -45º to 45º without coordinate rotation using 
Eq. (1) (see Reference [10] for details of image reconstructions).  
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Figure 7.  Reconstructed iamge of a human heart in vivo with 11 
transmissions steered from -45º to 45º with coordinate rotation using Eq. 
(1) (see Reference [10] for details of image reconstructions).  

IV. CONCLUSION  
The method developed using a rotation of coordinates may 

be useful to greatly reduce the complexity of imaging systems 
for reconstructing high-frame-rate images.  
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