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Abstract – Traditional methods for water treatment are not 
effective to remove micro pollutants such as harmful organics 
and cannot meet the demand for high-quality drinking water. 
Membrane technologies are known to produce drinking water of 
the highest quality. However, membrane fouling is a significant 
problem, which limits a widespread use of these technologies. 
Currently, chemical cleaning is used to control fouling, which 
interrupts the water production process during cleaning, 
produces secondary pollutants, shortens membrane life due to 
chemical erosion, adds costs of cleanup, handling, and 
transporting dangerous chemicals, and waste energy and the 
cleaned water. Ultrasound has been demonstrated effective for 
membrane cleaning and does not have the problems of chemical 
cleaning. However, current ultrasound methods have high energy 
consumption, require transducers that can handle high power, 
and are expensive to clean a large membrane area needed for a 
typical water treatment plant. In this paper, a focused ultrasound 
beam is used to create a high intensity at focus to produce 
cavitations for membrane cleaning. This method may save energy 
and potentially allow inexpensive low-power transducers such as 
polymeric transducers to be used. Combined with the 
beamforming technology that is widely used in medical 
ultrasound, the focused beams can be swept over a large surface 
area of membranes for cleaning. An experiment was performed 
and preliminary results show that the method is promising for 
membrane cleaning.  
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I.  INTRODUCTION  
Water is consumed by humans daily to sustain life and 

maintain a good health. Therefore, quality of water is of a 
paramount importance for human beings.  

Pollutions of water sources such as surface and ground 
water by micro pollutants are a global problem. This problem 
becomes more and more severe due to increased human 
activities in industry, consumer products, and agriculture. On 
the other hand, living conditions and living standard of humans 
are steadily improved due to technological innovations and 
advancements, which increase the demand of humans for 
cleaner drinking water. Therefore, we are facing a challenge to 
produce cleaner water at a time when the water sources become 
more polluted.  

Traditional methods for treatment of drinking water use 
pretreatment, coagulation/flocculation, clarification, biological 
treatment, sand filtration, activated carbon adsorption, and 

ultraviolet and chlorine disinfection [1]. These methods are not 
very effective for removing micro pollutants such as harmful 
organics. In addition, these methods produce byproducts that 
can cause cancers, deformation, and mutation since chlorine or 
chlorine-related chemicals are used in disinfection. Thus, 
quality of treated water is difficult to meet the clean water 
standards. Significant chemical and biological safety issue is 
becoming a new threat to the drinking water for many cities. 
The current process for deep treatment of drinking water from 
water sources contaminated by micro pollutants also has 
problems in practice.  

Pressure-driven membrane technologies such as 
microfiltration (MF) (0.1-10 micron pore size), ultrafiltration 
(UF) (2-100 nm pore size), nanofiltration (NF) (0.5-2 nm pore 
size), and reverse osmosis (RO) (<0.5 nm pore size) are the 
state-of-the-art technologies that have been demonstrated to 
produce high-quality drinking water [1-23]. They have many 
advantages such as they are effective in removing pathogens, 
easier to be automated, simpler to maintain, compact, requiring 
less coagulating agents and disinfectors, and capable of 
producing high-quality drinking water for human consumption. 
Despite of these advantages, membranes also face many 
challenges [17]. Among the challenges, membrane fouling is 
the foremost. Because the pore sizes of membranes such as 
nanofiltration membranes are small, the surface of the 
membranes may be electrically charged, and the composition 
of water sources contaminated by micro pollutants is complex, 
the surface of such membranes can be fouled very easily in 
practical uses [1, 17, 23]. The fouling problem has limited a 
widespread use of the membranes.  

To remove foulants and restore membrane functions, 
membranes need to be cleaned frequently [17, 23]. Currently, 
backpulse/backwash and chemical cleaning are used to control 
fouling. Among these methods, chemical cleaning is most 
common. Chemical cleaning interrupts the water production 
process during cleaning, produces secondary pollutants, 
shortens membrane life due to chemical erosion, adds costs of 
cleanup, handling, and transporting dangerous chemicals, 
wastes energy by decreasing and then increasing pressures 
needed for the membrane system to work, and wastes cleaned 
water.  

Ultrasound has been demonstrated effective for membrane 
cleaning and does not have the problems of chemical cleaning 
[24-32]. Some advantages of ultrasound cleaning are as 
follows: (1) the membranes can be cleaned while they are in 
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use, (2) there are no secondary pollutants and problems of 
transporting and handling of dangerous chemicals as in the 
chemical cleaning (in addition to the cost of chemicals and 
their transport, in many cases such as military applications, it 
has logistic problems to transport, handle, and dispose 
dangerous cleaning chemicals), and (3) hydrogen peroxide 
(H2O2) and hydroxyl free radical (.OH) produced by ultrasound 
can be used for disinfection of the distribution systems of 
drinking water, reducing the use of chlorine that produces 
carcinogenic byproducts and thus is harmful to humans.  

Although it has been demonstrated in various laboratory-
scale studies that ultrasound can be used very effectively to 
clean membranes, so far, there are no ultrasound technologies 
that are used in a large-scale drinking water treatment [28, 29]. 
There are two main reasons for this: (1) The cost of energy 
needed by ultrasound cleaner would be high. Based on [28], it 
is estimated that 8,501,760 watts of power is needed to process 
4.5 millions of gallons of drinking water per day with the 
DOW Chemical Filmtec NF270-4040 spiral wound 
nanofiltration membrane, adding about 0.45 cents energy cost 
per gallon of water produced if each kilowatt-hour of electricity 
costs about $0.1 US dollars. (2) Ultrasound transducers such as 
lead zirconate titanate (PZT) ceramics that could handle a high 
power to produce cavitations would be very costly, bulky, and 
brittle. In addition, the acoustical impedance of these 
transducers is much larger than that of water, making the 
coupling of the acoustic energy from the transducer to water 
difficult due to the impedance mismatch. When made into 
array transducers to steer beams, there will be high cross talk 
among elements if the transducers are not diced into thin 
elements. Dicing ceramics would be too costly to be practical 
for transducers of a large area (for example, membrane area 
needed can be 21,254,400 square inches for a water treatment 
plant that produces 4.5 million gallons of water per day). For 
such a large area, even the cost of PZT material alone would be 
very high.  

To overcome problems of current ultrasound methods, in 
this paper, we study the efficacy of a focused ultrasound beam 
on membrane cleaning. This study is significant since 
ultrasound intensity is increased greatly at the focus to create 
cavitation that is the main mechanism for membrane cleaning 
[29] without the need of high power transducers, potentially 
saving energy and allowing polymer-based (such as 
homopolymer or copolymer) transducers to be used [33]. 
Compared to PZT ceramic types of transducers, polymer-based 
transducers have low transmission efficiency but they are 
flexible, non-brittle, have a better acoustical impedance 
matching with water, and have a low cost. The flexibility of the 
polymer-based materials is necessary for integrating 
transducers into the spacer structures of existing commercial 
membrane units such as spiral wound membrane systems with 
minimal modifications. In addition, with polymeric phased 
array transducers that are formed by printing electrode patterns 
on polymer surfaces, beamforming techniques that are widely 
used in medical ultrasound [33-34] can be used to both focus 
ultrasound beams into a high intensity at focus and steer the 
focused beams over the surfaces of membranes for cleaning.  

II. EXPERIMENT AND RESULTS  
To show the efficacy of focused ultrasound beam in 

membrane cleaning, an experiment was performed (Figs. 1 and 
2). In the experiment, an ultrafiltration (molecular weight 
cutoff: 15,000-30,000 Da (or g/mol)) was used. The membrane 
was made by Osmonics with cellulose acetate. The membranes 
are nominally neutral (uncharged). The surface potential was 
not determined. To reduce the time for ultrasound cleaning, the 
membrane was masked with tapes on the feed side except for 
an area of 1 square inch. Before fouling, a filtration rate of 3.47 
milliliters/minute (mL/min) was measured with a GE Sepa CF 
II filtration test system. After fouling with a 10% of yeast (Fig. 
3) solution that was cooked in microwave until boiling, the 
filtration rate was reduced to 0.128 mL/min in 15 minutes. The 
fouled membrane (Fig. 4) was then cleaned with an ultrasound 
beam of about 2.7 MPa (peak) pressure at focus and 671 KHz  
frequency (Figs. 5 and 6). The beam has 300 cycles per burst 
with about 50 Hz pulse repetition rate for the bursts to avoid 
damaging to the transducer (V301-SU, Panametrics, Inc.). The 
transducer had a one inch diameter and was focused with a 
plastic lens of 37.5 mm geometrical focal length. The beam 
was scanned over the uncovered membrane surface at 1 mm/s 
speed in a raster format with a table-top scanning system under 
computer control (Fig. 7) to clean the membrane. After the 
cleaning, the filtration rate of the membrane was restored 
partially to about 1.67 mL/min (Fig. 8).  

 

 

Figure 1.  An ultrafiltration membrane (white piece of sheet near the center of 
the photo) is mounted in a GE Sepa CF II filtration test system for testing.  
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Figure 2.  The membrane mounted in the GE Sepa CF II filtration test system 
is connected to a high-pressure pump (the black cylinder near the center of 
the photo).  

 

 

Figure 3.  Microwave cooked baking yeast solution used as a foulant in the 
experiment.  

 

 

Figure 4.  An ultrafiltration membrane (the uncovered area is about 1 square 
inch) fouled by the yeast. The use of a small uncovered area is to reduce 
the time in the cleaning experiment.  

 

 

Figure 5.  Setup of the ultrasound cleaning experiment. It consists of function 
generators, 100W ENI 2100L power amplifier (Electronics & Innovation 
Ltd.), oscilloscope, multi-axis computer-controlled scanning system, 
Panametrics transducer (Panametrics, Inc.) of 1 inch diameter and 0.5 MHz 
nominal center frequency, and a plexiglass lens of 37.5 mm geometrical 
focal length.  

 

 

Figure 6.  A close view of the focused transducer, lens, and the membrane.  

 

 

Figure 7.  Computer program used to control the scanning pattern of the 
focused transducer.  

 

 

Figure 8.  The membrane cleaned and to be tested with the GE Sepa CF II 
filtration test system in Figs. 1 and 2.  

III. CONCLUSION  
This study shows the efficacy of focused ultrasound beams 

for membrane cleaning, potentially reducing energy 
consumption and allowing transducers of relatively low power 
rating to be used.  
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