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Previous solutions for spatial impulse responses of rectangular planar transducers require either approx-
imations or complex geometrical considerations. This paper describes a new, simplified and exact solu-
tion using only trigonometric functions and simple set operations. This solution, which can be
numerically implemented with a straightforward algorithm, is an exact implementation of the Rayleigh
integral without any far field or paraxial approximation. Additionally, a nonlinear relationship was also
established for spatial impulse responses from two field points which share the same projection point on
the transducer surface plane. By incorporating this relationship in the algorithm, the computational effi-
ciency of spatial impulse responses and continuous fields is improved about 20-folds and 14-folds,
respectively. This algorithm has practical applications in designing I-D linear/phased arrays, 1.5-D arrays
and 2-D arrays, as demonstrated through numerical simulations with array transducers. Experiments
were also conducted to verify the new solution and results show that the algorithm is both accurate
and efficient. The application of this method may include development of ultrasound imaging system
for hard and soft tissue nondestructive assessment.
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1. Introduction

Pulsed excitations are usually employed to generate transient
ultrasound fields and to probe the internal structure of objects in
ultrasound imaging. Accurate calculation of the transient field
emitted from transducers is very important in transducer design
and ultrasound system optimization. Harris [1] presented an excel-
lent review on the theories and mathematical methods for tran-
sient field calculation. For the rigidly baffled planar sources, the
most commonly employed method is the spatial impulse response
approach, originally proposed by Tupholme [2] and later by
Stepanishen [3,4]. In the classic treatment, the solution for the lin-
ear lossless wave equation of velocity potential is expressed as the
Rayleigh integral. According to the linear system theory, the inte-
gral can be further expressed as the temporal convolution between
the driving velocity and the spatial impulse response between the
field point and the transducer. At each field point, the spatial im-
pulse response is a function of time. Based on Huygen’s principle,
the impulse response can be evaluated using intersections be-
tween the ultrasound source and a spherical wave, which origi-
nates from the field point. Over the years, ultrasound sources of
different geometrical shapes, such as circles [3], rectangles [5-7],
triangles [8], polygons [9] and curved strips [10] have been studied.
In the classic form, the velocity distribution needs to be uniform.
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To overcome this limitation, Harris [11] and Tjotta and Tjotta
[12] suggested generalized impulse response methods to treat
nonuniform velocity distribution on the transducer surface. The
impulse response approach has also been further developed by
Lasota et al. [13] using the line impulse response and by Scarano
et al. [14] who expressed impulse response as functions of spatial
coordinates instead of time.

The solution for spatial impulse response is highly dependent
on the shape of the sources. The solution for the planar circular
source is relatively simple, because only one parameter, such as ra-
dius, is needed to describe the source. However, rectangular
sources require two separate parameters, i.e. width and height,
and the solution for the impulse response becomes rather complex
due to the discontinuities of the intersections. To simplify the solu-
tion, Stepanishen [3] divided the rectangular source into small
pieces and applied far field approximations for each small rectan-
gular source, whose response is a trapezoid. The impulse response
for the entire source was the summation of the smaller pieces.
Lockwood and Willette [5] were the first to derive the exact solu-
tion for rectangular sources. They divided the source into four sub-
rectangular sections by projecting the field point to the source sur-
face. The exact expression was given for each subsection, where
the projection point is one vertex of the sub-rectangle. The solution
for the whole source was finally expressed as the superposition of
the four subsections. Without using division and superposition, the
exact solution for a rectangular source can be derived by exhaus-
tive geometrical considerations of the relative position of the field
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point to the source. Emeterio and Ullate [7] provided a complete
solution after identifying four geometrical areas and a total of 18
different conditions. For numerical implementation, Jensen [8,9]
developed a new calculation procedure that sorts angles based
on geometrical considerations. All the described approaches re-
quire either approximations or complex geometrical consider-
ations. Therefore, a simplified and exact solution is needed.

In this work, a new approach was developed to calculate the
spatial impulse response for rectangular transducers. With this ap-
proach, the exact solution is derived in terms of the elementary
operation of sets and trigonometric functions. Compared to previ-
ous solutions, it has several advantages. First, the solution is exact,
unlike the solutions provided by Stepanishen [3] and Lee and Ben-
keser [15], where far field approximation is used. Second, the ap-
proach does not involve division and superposition like the exact
solution provided by Lockwood and Willette [5]. Third, the ap-
proach is straightforward and easy to implement compared to
the solutions proposed by Emeterio and Ullate [7] and Jensen
[8,9] that involve complex geometrical considerations and angle
sorting. Additionally, a new, nonlinear relationship is also estab-
lished for the spatial impulse responses of two different field
points sharing the same projection point on the transducer surface
plane. With this nonlinear conversion, the new method and algo-
rithm improve the computational efficiency dramatically in
numerical implementation.

The solution and the algorithm developed here have broad
applications in the transient/continuous field calculations for 1-
D linear/phased arrays, 1.5-D arrays and 2-D arrays, which are
essential in ultrasound system simulations and optimizations.
To demonstrate such applications, numerical examples of spatial
impulse response, transient/continuous fields and transmission/
reception system response were provided in the context of a lin-
ear array.

2. Theory

As shown in Fig. 14, a rigidly-baffled rectangular transducer is
located on plane z = 0, with a height of h and a width of w. The cen-
ter of the transducer is at the origin of the coordinates. According
to the Rayleigh integral [1], the solution to the linear lossless scalar
wave equation can be expressed as,

u(t —R/c)

2nR ds,

D(x,y,z; 1) :/ (1)

S

where @(x,y,z;t) is the velocity potential; R is the distance
between transducer element ds and the field point (x,y,2); c is
the speed of sound in the media; and u(t) is the uniform velocity
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distribution normal to the transducer surface. The term u(t — R/c)
can be written in the integration form,

u(t—R/c) = /

—00

+00

u(7)é(t — R/c — 1)dr. (2)

Substituting the above equation into Eq. (1) and changing the
order of integration yield,

D(x,y,z;t) = /

—00

+00

u(z) / ot —ZRg}g - 1)

If a new function is defined as,

hixy.zse = [ 22O

then Eq. (3) can be expressed in a convolution form as,

®(x,y,z;t) = u(t) = h(x,y,z;t),

dsdt. (3)

ds, (4)

(5)
where * is the convolution in time domain. The function h(x, y, z; t)
is also called the spatial impulse response of the system at field
point (x, y, z).

The spatial impulse response from Eq. (4) can be expressed
explicitly as follows,

R 5(t —R/c)

O,
h(x,y,z;t) :/@ /R

Using the relationship R? = r? + z? and according to Ref. [9], the
above equation can be further simplified as,
(@2 - @1)C
T @)
where @ and @, are determined by the intersection of the trans-
ducer and the projected spherical wave with a radius of R = ct (refer
to Fig. 1a). The intersection of the spherical wave with the plane

z=0is a circle centered at (x,y, 0) with a radius of r = y/(ct)? — 22
when t>z/c. When the circle intersects the transducer aperture,
some intersected arcs are located inside the transducer aperture.
The angles expanded by these arcs are directly related to the spatial
impulse response given by Eq. (7). When more than one arc exists,
the spatial impulse response is the summation of contributions
from all arcs, and Eq. (7) is changed to the following summation:

(6, - ol)c
- 2m

rdrd®,

2mR (6)

h(x,y.z;t) =

h(X,y,Z; t) = Z

1

(8)

where [ is the index of the arcs.

To calculate @, and @,, we shift the origin of the coordinates to
(x,y,0) and obtain a new coordinate (x',y’, z) as shown in Fig. 1b.
With the new 2-D coordinates at the plane z = 0, the circle can be
expressed in polar coordinates as
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Fig. 1. Geometry of the transducer and the filed point: (a) spherical intersection in original 3-D rectangular coordinates and (b) spherical intersection in the shifted 2-D

coordinates.
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{x/ircF)s@, ©
y =rsin®.

If a point on the circle is inside the transducer aperture, the an-
gle ® must satisfy the following inequalities,

X1 <1C0SO <X, ()

{Jﬁ <rsin@ <y,, (b)
where X1, X, ¥1 and y- are the coordinates of the four boundaries of
the transducer in the new coordinates given by x;=—-x — w/2,
X2 =-Xx+Ww/[2,y;=-y —h/2 and y, = —y + h[2, respectively.

Assuming that Eq. (10a) holds when @ € |J[@',, ©.,] and Eq. (10b)
also holds when @ € J[@},, ©),), we define the following relation,

J

Ulenet] = (Ufonea] ) (U fehoi]) )
[ i J

where i is the index of the sets that satisfy Eq. (10a); j is the index of

the sets that satisfy Eq. (10b); | is the union of the sets; N is the
intersection of the sets; and each set corresponds to an arc. When

Oc L[J [@’1, @’2} Eq. (10) is satisfied. With the sets obtained from

(10)

Eq. (11), the spatial impulse response can be evaluated from Eq. (8).

Calculation of these sets is a matter of trivial algebraic opera-
tions involving only elementary trigonometric functions. Notice
that @ is defined on [0, 27t], but the inverse cosine and inverse sine
functions are defined on different ranges. For example, assuming
that the inverse cosine function cos~!(x) is defined on [0, 7], from
Eq. (10a) we have,

6 €[0,0], when > 1 or % < —1;

O € [cos™! (%2),cos! (3)] U [2m — cos! (2),2m — cos~! (B)],
when 3 > -1 and 2 < 1;

O € [cos™! (2),2m — cos~! (%2)],
when 2 < -Tand —1<2<1;

O € [0,cos™! ()] U [2m — cos! (%),27],
when —1<%<1and 2> 1;

O €[0,27n], when 2 < -1 and %2 > 1.

(12)
Assuming that the inverse sine function sin~'(x) is defined on [—7/2,
7/2], from Eq. (10b) we have,
0 <[0,0], when & >1or Z < -1;
(O3 [sin’1 (W), sin”" (5’72)] U {n —sin”' (&), —sin”’' (YTT)],
when ¥ > 0 and £ < 1;
0 ¢ [n —sin”' (), 7 —sin”"’ (’%)]
U[2m+sin™ (2),2n+sin" (2)],
when . > -1 and % <0;
O3 [0, sin” (y%)} U [TC —sin”' (%), 7 —sin”’ (YT‘)]
U [271 +sin”’ (”71),271],
when —1 <2 <0and 0 <2< 1;
0¢c [O, sin”' (YTZ)} U [n —sin' (2),2
when ¥ < -1 and 0 <2 < 1;
0 ¢ [n —sin”' (2),27 +sin” (2)],
when # < -1 and - 1<% <0;
0 ¢ [sin’1 (), 7 —sin”' (YTI)],
when 0 <% <1and 2> 1;
O e [O,n —sin”' (YT‘)} U [2n+ sin”' (%),Zn],
when —1 <% <0and 2> 1;
0 <[0,2n], when ¥ < -Tand 2 > 1.

The algorithm to calculate the spatial impulse response
h(x,y, z; t) for field point (x, y, z) at time ¢t is as follows:

(a) Decide if time ¢ falls into the range in which the impulse
response is not zero. The range is defined by t;, = z/c when
the spherical wave first intersects the source plane and

tmax = max{\/z2 + (x+w/2)? + (y+£h/2)*/c} when the
spherical wave interacts the farthest vertex of the rectangu-
lar source. If t falls into the range [tmin, tmax], proceed to step
(b). Otherwise, the impulse response is zero.

(b) Calculate the radius r = {/(ct)* — z2 and the shifted coordi-
nates x;=-x—w/2 and x,=—x+w/2. Find the union of
the sets according to Eq. (12).

(c) Calculate the shifted coordinates y;=-y—h/2 and
Yy, = —y + h/2. Find the union of the sets according to Eq. (13).

(d) Calculate the intersections of the unions obtained from step
(b) and step (c) according to Eq. (11).

(e) Evaluate the spatial impulse response from the intersections
according to Eq. (8).

After the spatial impulse response is evaluated, the pressure at
the field point (x,y, z) can be calculated directly as [1],
0P(x,y,z;t) ; du(t)
T*/’oh(&y,Z t) * (14)
where pg is the density of the media.

From the algorithm and Eqs. (8)-(13), it is obvious that the spa-
tial impulse response h(x,y, z; t) depends on the shifted coordi-
nates Xi, X2, ¥1,y2 and the radius r. If the two coordinates, x and
y, of the field points are fixed, spatial impulse response would only
depend on radius r. For two field points (x,y, zo) and (x,y, z1), if

ro = 1/ (cto)* — 22 equals to r; = y/(ct;)* — 22, the spatial impulse
responses at the two field points are equal for these specific mo-
ments and distances, i.e. h(x, y, zo; to) = h(x, y, z1; t;). From

Victo)? -2 = /et - 22, (15)

we have

to= /8 -2/ + /e, (16)

where ty > zo/c and t; > z;/c. Thus we have the following
relationship,

hx,y, 215 t1) = h(x,y,zo; N +z§/c2). (17)

If z, is set to zero, we get the following after changing the variables:

h(x,y,z;t) = h(x,y, 0;4/t? —22/CZ>. (18)

Eq. (18) has an important implication for numerical calculation of
the spatial impulse response. It means that the spatial impulse re-
sponse at one field point can be directly related to the response at
another point, which is the projection at the transducer surface
plane. We only need to calculate the spatial impulse response
h(x,y,0; t) at (x,y, 0) once and save it as a lookup table. The spatial
impulse response h(x, y, z; t) at field point (x, y, z) can be evaluated

as h<x,y,0; /2 — zZ/c2> with one simple nonlinear conversion of

time t. For applications where time is evenly sampled, we are
attempting to evaluate h(x, y, z; nAT,) from h(x, y, 0; mAT,), where
AT, and AT, are the sampling intervals for h(x,y,0;t) and
h(x,y, z; t) respectively and m and n are natural integers. After non-
linear conversion, we have

p(X,y,Z; t) = pO

mAT; < 4/ (nAT,)* — 22/ < (m + 1)AT;. (19)
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The converted time y/(nAT,)* —z2/c2 may not exactly fall on the
sampled time point. Linear interpolation is needed, and we get

h(x,y,z;nAT,) = (m +1—1/(nAT,)? — 22/c2 /AT1>h(x, y,0;mAT;)

+ < (nAT,)* — 22/c2 /AT, — m) h(x,y,0; (m

+ 1)ATy).
(20)
To reduce the numerical error introduced by the interpolation, a

smaller sampling interval AT; can be used to generate the lookup
table, which needs to be calculated only once.

3. Results

In this section, applications of the algorithm are demonstrated
through numerical simulations and experimental validations. The
spatial impulse responses, transient fields, continuous fields and
echo signals were calculated for a linear array transducer. The
applications for 1.5-D or 2-D arrays can be easily formulated fol-
lowing the same procedure. Experiments were carried out to verify
the simulation results of the echo signals. The influences of sam-
pling rate, computational efficiency and accuracy were also
addressed.

3.1. Simulation conditions

For numerical simulations, we assumed a linear array trans-
ducer with 128 elements. It has a pitch of 0.15 mm, physical
dimensions of 19.2 mm x 14 mm, and a central frequency of
2.5 MHz. It models a commercial V2 array transducer from Acuson
that was used in the experimental setup. There is no focusing in
elevation for numerical simulations while the physical transducer
does have one with a focal distance of 68 mm.

For simplicity, the transfer function of the transducer in the
simulation was assumed to be a Blackman window for both trans-
mission and reception,

0.42 — 0.5 cos(7tf /fc) + 0.08 cos(27f /fc), if 0 < f < 2f,
0, if f>2f..
(21)

The two-way fractional bandwidth of this function is 64% of the
central frequency at —6 dB and the bandwidth of the physical
transducer V2 is about 50-60%.

The driving signal for each element in the transient field and
echo simulation was a one-cycle sine wave at 2.5 MHz without
any time delay, which was also used in the experiments. For con-
tinuous field simulation, the driving signal at each element was a
continuous sine wave at 2.5 MHz with an initial phase of zero.
The weighting level for every element in both simulation and
experiment was set to be one and the unit of measurement for
the coordinates defined in the following subsections is mm.

The algorithm developed in this study and the classic method
developed by Lockwood and Willette [5], which was used as a stan-
dard for comparison, were both implemented using C language.
The algorithms were tested under the Linux operating system on
a PC equipped with dual processors running at 2.8 GHz and a total
internal memory of 2 GB.

For numerical error calculation, two paired signals were first
normalized separately. Then, the error signal was defined as the
absolute difference between the two normalized signals. The max-
imum error was detected by scanning the error signal from begin-
ning to the end. When two images with multiple paired signals

B - {

were compared, the overall maximum error across all pairs was
obtained by finding the maximum of the maximum errors of each
pair. The maximum error is expressed as a percentage.

3.2. Impulse response for array transducer

For a linear array consisting of N flat transducer elements, the
impulse response of the whole transducer can be treated as the
summation of the individual impulse responses from each element
if the same driving signal is applied all elements.

As shown in Fig. 2, the spatial impulse response of the whole
transducer for a linear array can be expressed as

N-1
h(x,y,z;t) = > ahi(x.y,z;t), (22)
i=0

where h(x, y, z; t) is the spatial impulse response of the whole trans-
ducer;i=0,1,...,N —1,is the index of the elements of the array; a;
is the weighting level at element i; h{(x, y, z; t) is the spatial impulse
response between the element i and the field point (x, y, z), which
can be calculated according to Eq. (8). However, Eq. (8) only applies
when the center of the transducer is located at the origin. Therefore,
the origin of the coordinates needs to be shifted to the center of
each element and the coordinates of the field point need to be chan-
ged accordingly.

The spatial impulse responses of the linear transducer defined in
Section 3.1 were calculated. The field points were on two typical
lines defined by (0, 0, z) and (20, 0, z) (refer to Fig. 2 for the definition
of the coordinates). One of the lines (0, 0, z) has a projection point
(0, 0, 0) that lies inside the transducer aperture, while the projection
point (20, 0, 0) from the other line is outside the transducer aperture.

Fig. 3 shows selected plots of normalized spatial impulse re-
sponses at different distances along the line defined by (0, 0, z).
For clarity, the responses at different distances were vertically
shifted in a progressive manner. In reality, all these responses
share the same base line of zero. The plots in dashed lines were cal-
culated according to the new algorithm with the nonlinear conver-
sion defined in Eq. (18). The plots in solid lines were calculated
directly according to the classic method by Lockwood and Willette
[5]. Following the same format, Fig. 4 shows plots of spatial im-
pulse responses along another line defined by (20, 0, z).

The spatial impulse responses along these two lines have very
distinct features. If a line has a projection point inside the trans-
ducer aperture, the spatial impulse responses along the line jump
suddenly from zero to their maxima. On the other hand, if the line
has a projection point lying outside of the transducer aperture, the
spatial impulse responses gradually increase to their maxima.
However, the spatial impulse responses for field points along the
same line share the same basic characteristics. When a point is
further away from the transducer, the main features of the impulse

z

(x.y,2)

hi(x=y=Z;t)

X

Fig. 2. The geometry of the array transducer and field point.
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Spatial Impulse Response
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Fig. 3. The plots of the spatial impulse response along line (0, 0, z) with the unit
being mm.

response are condensed in time, and the duration is reduced. This
phenomenon is predicted by Eq. (18) and is the base for nonlinear
conversion. These characteristics of the impulse response have
some influence on numerical implementations. When field points
further away from the transducer surface are considered, a higher
temporal sampling rate is required to meet the sampling require-
ment and avoid aliases.

For Fig. 3, the spatial impulse responses of 800 field points along
the line (0,0,z) were calculated with a sampling distance of
0.15 mm. It took 15.64 s for the new algorithm and 318.42 s for
the classic method. There is a 20-fold increase in calculation speed.
For the field points along line (20, 0, z), similar speed improvement
was observed. From these selected plots in both Figs. 3 and 4, it is
difficult to tell the difference in the results calculated from the dif-
ferent algorithms. However, the numerical implementation of the
nonlinear conversion introduced some error to the spatial impulse
responses when compared to the responses calculated directly
with the classic method, which is exact at specific sampling fre-
quency. With a temporal sampling frequency of 100 MHz, the max-
imum errors across all the field points were 1.55% and 2.40% for the
lines (0, 0, z) and (20, 0, z) respectively.

3.3. Transient field calculation for array transducer

To calculate the transient field at point (x, y, z) for a linear array
transducer, one can add the pressure from each element (as de-
fined in Eq. (14)) together as follows,

el ou;(t
Pzt = py Y ahixy.z0) « 200 23)
i=0

Spatial Impulse Response
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Fig. 4. The plots of the spatial impulse response along line (20, 0, z) with the unit
being mm.

where uy(t) is the velocity profile for element i, and all the other
parameters have the same definitions as those in Eq. (22). Here,
the velocity profile of each element does not have to be the same.
For example, to generate a focused pulse, a different time delay is
needed for each element, and the velocity profile u;(t) has to be dif-
ferent for every element.

Fig. 5 shows the transient fields for four selected points at
(0,0, 60), (6,0,60), (0,0,120) and (6, 0, 120). A pulsed plane wave
was simulated, and the transmit transfer function defined by Eq.
(21) was also included and acted as a band pass filter for the exci-
tation signal. The time duration of these transient fields was trun-
cated to a window of 5 ps with the starting moment shifted to
show details of the wave.

The temporal sampling frequency has a major influence on the
numerical accuracy of the transient fields calculated using all spa-
tial impulse response approaches. The study conducted by Crombie
et al. [16] showed that the maximum error is about 5% at a sam-
pling rate of 250 MHz for exact solutions. The errors were calcu-
lated by comparing the fields to those calculated with a sampling
rate of 4 GHz. For the linear array defined here, the maximum er-
rors of the transient fields are calculated for 128 field points with
a spatial sampling distance of 0.15mm on a line defined by
(x,0,120). At sampling frequencies of 40MHz, 160 MHz,
320 MHz and 640 MHz, the maximum errors are 13.7%, 2.67%,
1.14% and 0.69%, respectively. These errors were calculated using
the transient field at 5120 MHz as the standard for comparison,
since an even higher sampling rate would not significantly improve
accuracy. The base frequency of 40 MHz was chosen because it was
the sampling frequency used in the experiment. Considering the
different transducer configurations involved, the results agree with
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Plots of Transient Fields
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Fig. 5. The plots of transient fields at four points: (a) (0, 0, 60), (b) (6, 0, 60), (c) (0, 0, 120) and (d) (6, 0, 120) with the unit being mm.

those in literature. For the field point (x,y,z) with a projection
point lying inside the transducer aperture, the spatial impulse re-
sponse jumps suddenly from zero to maximum at the moment
t=z/c as shown in Fig. 3. Theoretically, the sampling frequency
has to be infinite to capture the sudden jump at the precise mo-
ment. When finite sampling frequency is used, the starting mo-
ment of the spatial impulse response always has an uncertainty
of AT, which is the temporal sampling interval. If the transient field
shape, not the starting moment, is the major concern, the uncer-
tainty can be partially corrected by shifting the starting moment
within AT. With the correction, the maximum errors at 40 MHz,
160 MHz, 320 MHz and 640 MHz drop significantly to 3.90%,
0.98%, 0.43%, and 0.30% respectively, which implies that the sam-
pling rate does not have to be extremely high to have acceptable
accuracy in terms of the shape of the transient field.

3.4. Continuous field calculation for array transducer

The continuous field is a special case of transient fields, where
the excitation is a continuous harmonic wave instead of a pulse.
Referring to Eq. (14), if u(t) = e/®o™+%), we have

P(X.y.z:t) = poh(x,y,z;t) « de' " dt, (24)
where wg and ¢ are the angular frequency and initial phase of the
driving signal respectively. Eq. (24) can be explicitly rewritten as

- h(x,y,z; T)e 0T drel@ot+d),

P(x.y.2: 1) = jop, / (25)

—00

Defining the time domain Fourier transform of h(x, y, z; t) as

+o00
Hxy.zio) = [ hixy.zmedr, (26)
Eq. (25) can be simplified as follows,
P(x,y,2z;t) = jaxpoH(X, Y, Z; )/ 07, (27)

For array transducer, if every element is driven at the same fre-
quency wy; from Eq. (23) and Eq. (27), we obtain

N-1
p(Xd}7 z; t) :jwopoe)u)ot Z aiHi(X7y7 z; wo)e)(bi7
i=0

(28)

where Hi(x, y, z; wo) is the Fourier transform of hi(x, y, z; t) evaluated
at frequency my, and ¢; is the initial phase of the driving signal at
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element i. When the initial phases of each element are the same, a
continuous plane wave can be obtained. For a continuous focused
wave, the initial phases at different elements need to be different.

The continuous plane-wave fields at central frequency of
2.5 MHz for the array transducer were calculated and displayed
in Fig. 6. The amplitude of the fields was normalized and log-com-
pressed to —40 dB. The field points are located on the plane defined
by (x, 0, z) with dimensions of 38.4 mm by 120 mm. The spatial
sampling distance is 0.15 mm in each direction. The field in panel
(a) is calculated using the method developed in this study with
nonlinear conversion, while the one in panel (b) is evaluated di-
rectly using the classic method. It took 52.5 min and 746.2 min
to calculate panel (a) and panel (b) respectively at a temporal sam-
pling frequency of 100 MHz. In terms of the computational effi-
ciency, an improvement of 14-folds is achieved with the new
method. The nonlinear conversion only introduces a negligible
maximum error of 0.49% across all field points.

For continuous field calculation, the spatial impulse response
approach has a unique feature. As seen in Eqgs. (24)-(28), one has
to calculate the time-domain spatial impulse response, which is
the most time-consuming part, before calculating the continuous
field at one specific frequency. The next step is to obtain the Fou-
rier transform of these responses. With fast Fourier transform,
the continuous fields at all frequencies, which are smaller than half
of the sampling frequency, are calculated at the same time. This al-
lows the continuous fields at all frequencies to be evaluated with-
out further calculations. In addition, this approach can calculate
the continuous field starting right from the transducer surface un-
like the classic Rayleigh—-Sommerfeld method [17] which is unable
to do so because it needs numerical double integration. When the
field point gets too close to the source, the phases change too rap-
idly for the integration to converge. To overcome the limitation of
the Rayleigh-Sommerfeld method, the distribute point source
method (DPSM) [18-20] was recently proposed. This method uses
distributed point sources located slightly behind the transducer
surface to model the transducer. In this way, the continuous field
that starts right from the transducer surface can be calculated by
summing the contribution from all point sources, whose strengths
are determined by the boundary condition on the transducer

surface. Detailed comparisons between DPSM and our approach
are beyond the scope of this paper. Therefore, only a brief compar-
ison will be made here. When implemented under the same condi-
tions as described in Section 3.1, DSPM took 8.1 min and 32.4 min
to calculate the same field when 128 x 93 and 256 x 186 point
sources of uniform strength were used, respectively. These fields
are displayed in Fig. 7. The maximum errors of these two fields
compared to the field calculated with the classic method (as dis-
played in Fig. 6b), are 20.48% and 11.62%, respectively. The maxi-
mum error decreases when the density of the point sources
increases, however these errors are all significantly higher than
the error from our method (as displayed in Fig. 6a), which is
0.49%. It is obvious that the density of the distributed point sources
for DPSM has to be increased to improve accuracy, which in turn,
would increase calculation time dramatically. On the other hand,
the calculation time of our method was reduced to only 5.2 min
when one single large-aperture transducer, instead of the 128-ele-
ment array transducer, was assumed in implementation. Take note
that the errors for DPSM are noticeably higher than those described
in Ref. [20]. This could possibly be due to the fact that off-axis field
points were included in this work and different comparison criteria
were used.

3.5. Echo simulation and experiment for array transducer

Based on the linear system theory [16,21], the pulse-echo re-
sponse of a linear array transducer can be easily modeled. When
one point at (x,y, z) (refer to Fig. 2) is insonifed by ultrasound, it
scatters the ultrasound with a coefficient f(x, y, z). Then the scat-
tered ultrasound received by an element of the array transducer
is given by [21],

Pixy.zt) =2 f(xy Dhix.y.2:0)

d*u;(t)
dt |

If the electro-mechanical transfer function of the array is B(t),

then the electrically received echo signal from element i can be ex-
pressed as,

N-1
s Y aihi(x,y,z;t) « (29)
i=0

Continuous Fields Calculated with New and Classic Methods

E
£
=
o«
]

120mm

Fig. 6. Continuous plane-wave fields for the array transducer at 2.5 MHz: (a) new method and (b) classic method.
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Continuous Fields Calculated with DPSM
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Fig. 7. Continuous plane-wave fields for the array transducer at 2.5 MHz: (a) DPSM with 128 x 93 point sources and (b) DPSM with 256 x 186 point sources.

() = P2 (x.,2)B(0) + hix.y.z:1)

N-1 2,
S ahxy,z ) T4O] (30
=0 dit

When weak scattering approximation or First Born approxima-
tion [22] is assumed, one obtains the echo signals from multiple
scattering points as the summation of the contributions from each
point as defined in Eq. (30).

Echo signals were simulated and experimentally collected for
four separate points with coordinates of (0,0, 30), (0,0, 50),
(0, 0,70)and (0, 0, 90) respectively. The experiment was conducted
in degassed water at room temperature and a small glass ball with
a diameter of 0.5 mm served as a point scatterer. The scatterer was
placed at the center of the transducer and vertically descended to

an appropriate depth using a stepping motor. The depth was also
independently verified by the time of flight of the echoes. The echo
data was digitized with a resolution of 12 bits and a sampling fre-
quency of 40 MHz by a self-built ultrasound imaging system [23]
that has 128 independent transmit/receive channels.

Fig. 8 shows the echo signals with time duration of 5 ps. The
echo signals detected by all 128 elements were converted to grey
scale and arranged in parallel to form a 2D image. The horizontal
dimension for these images is time, while the vertical dimension
is the index of each element, starting from 0 to 127. Fig. 9 shows
the line plots of the normalized echoes at element 64. The simu-
lated echo signals are displayed in solid lines and the experimental
ones in dashed lines.

From these two figures, one can observe that the simulation
agrees with the experiment fairly well. The main features of the

Simulated and Experimental Echo Signals

Simulation

) 2=30mm 2=50mm

Experiment

g) f=60mm

(e) f=30mm

|

(c) z=70mm ) z=90mm

(h) f=70mm i) f=90mm

Fig. 8. Simulated and experimental echo signals: (a-d) are simulated results for four points at the center of the transducer with a distance of 30 mm, 50 mm, 70 mm and
90 mm away from the transducer surface respectively. (e-i) are experimental results in water for the same points as in (a-d). The vertical dimension is the index of elements
of the transducer, and the horizontal dimension is time.
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Plots of Echo Signals

o @ 1 T i ®)
v z =30 mm i z =50 mm
05}
0
05}
o ___ Simulation
° B
2 | .. Experiment H
é AL . . ] A . . ]
S 0 10 20 30 40 50 0 10 20 30 40 50
e)
(0]
= 1t ; 1
© c
g (c)
s z=70 mm
zZ
05F
0
05} 1 o5} :
i §
At 1 At 1
0 10 20 30 40 50 0 10 20 30 40 50

Time (us)

Fig. 9. The plots of echo signals at element 64 as in Fig. 8: (a) z=30 mm, (b)
z=50mm, (c) z=70 mm and (d) z=90 mm.

echoes from the simulation were very similar to those from the
experiment. However, some differences do exist. For example,
the echoes in the experiment last longer than those in the simula-
tion. There are several possible causes for such differences. First,
the transfer function used in the simulation was the well-defined
Blackman window whose two-way bandwidth is slightly higher
than that of the physical V2 transducer, resulting in a shorter pulse.
Second, an ideal point scatterer was assumed in the simulation,
while a glass ball with a diameter close to the central wavelength
of the transducer was used in the experiment. Third, there is a
physical focus at 68 mm in elevation for the V2 transducer while
no focusing in elevation was assumed in simulation.

4. Conclusion

Spatial impulse response method is very important for tran-
sient, continuous field calculations and transducer designs. The
previous solutions of the spatial impulse response for rectangular
planar transducers required divisions and superposition, compli-
cated geometrical considerations or far field approximations. In
this study, we developed a simple and exact solution involving
only elementary trigonometric functions and simple set opera-
tions. A nonlinear relationship was also established for the spatial
impulse responses from two field points sharing the same projec-

tion point in the transducer surface plane. Coupled with this non-
linear conversion, the new method achieved a 20-fold and 14-fold
increase in computational efficiency for spatial impulse response
calculation and continuous field calculation respectively. This
method may have potential to improve the design of ultrasound
imaging system for hard and soft tissue nondestructive
assessment.
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