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5
Limited-Diffraction Beams for High-Frame-Rate Imaging

Jian-yu Lu

5.1
Introduction

In the first volume of this book [1], the author reviewed Bessel beams [2, 3], X
waves [4—8], other limited-diffraction beams [9-15], and their various applications
such as high-frame-rate (HFR) imaging [16-18], extended HFR imaging [19-30],
fast computation of wave fields [31], biomedical tissue characterization [32], pulse-
echo medical imaging [33-35], blood flow velocity vector imaging [36, 37], non-
destructive evaluation of materials (NDE) [38], optical coherent tomography (OCT)
[39], high-speed optical communications [40, 41], and high-resolution two-way
dynamic focusing imaging [42]. In addition, limited-diffraction solutions to the
Klein—-Gordon equation and Schrédinger equation, as well as these solutions in
confined spaces were obtained [1]. For readers who are interested in getting more
information, 190 references have been provided in [1] including some review papers
on X waves and their applications [43-45]. Bessel beams, X waves, and related
localized waves have also been studied extensively by many other investigators
[46—61]. Due to their potential applications in various fields, X waves were featured
in the magazine Physics Today (8].

The terminology “limited-diffraction beams" is a general term representing all
beams or waves that are propagation invariant, that is, in theory, the shapes of
these beams remain the same as they propagate to an infinite distance [62]. Among
limited-diffraction beams, those that have a localized center, such as Bessel beams
[2, 3] and X waves [4—8], are of particular interest.

Based on the theory of limited-diffraction beams such as the Bessel beams and X
waves, a HFR two-dimensional (2D) and three-dimensional (3D) imaging method
was developed [16-18] and extended [19-30]. To understand this method, it is
helpful to explain how conventional imaging methods work. In the conventional
imaging methods such as delay-and-sum (D&S) [63] and pulse-echo radar imaging
[64], a broadband beam focused in one direction is transmitted to illuminate objects
such as biological soft tissues with a planer array transducer (a transducer consist-
ing of multiple elements arranged either along a line or on a rectangular grid with
an equal distance between elements) [65). Because individual cells in the biological

Non-Diffracting Waves, First Edition.
Edited by Hugo E. Hernindez-Figueroa, Erasmo Recami, and Michel Zamboni-Rached,
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
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5 Limited-Diffraction Beams for High-Frame-Rate Imaging

soft tissues can scatter incoming waves in all directions, part of the waves are scat-
tered back to the array transducer that lransmits the waves. The scattered waves are
then converted to electrical signals (received signals) representing the backscattered
waves by thearray transducer. The received signals (echo signals) are not onlya func-
tion of time, but alse a function of the position of the element of the array transducer.
With the received signals, a line of images is reconstructed by properly delaying
the signals from each element and then summing the delayed signals to produce
a focused receive beam whose focus tracks echoes dynamically along the direction
of the transmit beam as the echoes return from a deeper and deeper depth with
time. After getting a line of image, a new beam is transmitted in a slightly different
direction than the previous one and then the received echo signals corresponding
to this beam are used to reconstruct another line of image. This process is repeated
until an entire image, which usually covers a 90 field of view, is reconstructed.

Due to the line-by-line imaging process and the fact that each beam takes time
to propagate from the surface of the transducer to a certain depth of interest and
then return, it needs quite a leng time to reconstruct an image in the case of
ultrasound. For example, assuming that we would like to get an image that has
a sector shape with its apex on the center of the surface of the transducer, where
the sector consists of 91 lines, the image depth (or sector radius) is 240 mm, and
the ultrasound speed of sound is about 1.5mm us™' in biological soft tissues, it
will take ((240 x 2) x 91)/1.5 = 29120 ps to reconstruct an image. This limits the
maximum image frame rate te about 34 FPS. Since the human heart completes a
beat in about one second, this frame rate is inadequate to extract parameters of
moving structures such as the mitral valve and blood flow for medical diagnoses. 1f
a 3D image is reconstructed from a 3D object, the image frame rate will be further
reduced by another 91, that is, 34/91=0.37 FPS, assuming 91 slices are used to
form a frame of the 3D image.

To increase the image frame rate, it is important to develop an imaging method
that is not based on the line-by-line principle. The HFR imaging method is such
a method that allows reconstructing one image from each transmit beam [16-18].
A proposed system of the HFR imaging method is shown in Figure 5.1 [21],
where broad beams (as opposed to the narrowly focused beam in the D&S method
above) such as steered plane waves or limited-diffraction array beams are used
in transmission to illuminate the entire object [19-23] (also see claims 8 and 9
for steered plane waves and claim 3 for limited-diffraction beams in [18)). Then,
limited-diffraction array beams or simply spatial Fourier transforms are used to
reconstruct images. To simplify the imaging system, the steps that convert echo
signals to optical and then recover them from the optical signals can be eliminated
by integrating the image reconstruction electronics into an ultrasound probe that
doctors hold to scan patients and acquire data. After images are reconstructed, they
are transmitted wirelessly to an external display unit (see claims in [21]). The frame
rate of the HFR imaging approach can be calculated using the example above.
Since the entire object is illuminated by one broad transmit beam to reconstruct
a 3D image, the time needed to reconstruct a frame of image is only about
(240 x 2)/1.5 = 320 ps. This translates to an ultra-high image frame rate of about
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5 Limited-Diffraction Beams for High-Frame-Rate Imaging

3125 FPS for either 2D or 3D imaging. This is useful for functional ultrasound
imaging, elasticity imaging, blood flow velocity vector imaging, and strain and
strain rate imaging of fast moving objects such as the heart [28, 29, 36, 37, 66, 67].
Because of its importance, the HFR imaging method was regarded as one of the
predictions of the twenty-first century medical ultrasound in 2000 [68].

In this chapter, the theory of the HFR imaging method [16—-23] and its relation-
ship with limited-diffraction beams such as the Bessel beams (2, 3] and X waves
[4-8] will be reviewed. Various improvements, developments, and applications of
the HFR imaging method will be presented [9-15, 2445, 62, 65, 7677, 82, 86-88].

5.2
Theory of Limited-Diffraction Beams

5.2.1
Generalized Solutions to Wave Equation

An N-dimensional isotropic/homogeneous wave equation is given by

o 192
ZQ*;*BT; r,t) =0 (5.1)
=1
where x; (j = 1,2, ... , N) represents rectangular coordinates in an N-dimensional
space, N > lisaninteger, ®(r, t) is a scalar function (sound pressure, velocity poten-
tial, or Hertz potential in electromagnetics) of spatial variables, r = (x),%,, ... ,%y),
and time, L. ¢ is the speed of sound in a medium (or the speed of light in vacuum)
19, 44].
In 3D space, we have:
a2
(v2 - 512%) P(r, 1) =0 (52)

where V7 is the Laplace operator. In cylindrical coordinates, the wave equation is
given by
1a (8 1 gt 92 1 8?
(et st ——=— |®@f =0 3
[r ar (rﬂr) Tt atZ] (x4 G3)
where r = /x* +y? is the radial distance, ¢ = tan~!(y/x) is the polar angle, and z
is the axial axis.
One generalized solution to the N-dimensional wave equation in Equation 5.1 is
given by [5, 43, 44]

Dy, %5, oo %y B) = £19) (5.4)
where
N—1
s= Y Dp;+ Dy(xy £ cit). N> 1 (5.5)

Jj=1
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and where D; are complex coefficients, f(s) is any well-behaved complex function
of s, and

N—1
o =c |1+ D/D} (5.6)
J=

Ifc, is real, f (s) and its linear superposition represent limited-diffraction solutions
to the N-dimensional wave equation (Equation 5.1).

For example, if N=3, x,=x, x =y, % =2 D, =gk )cost, D, =
ay(k, ) sin®, Dy = b{k,£), with cylindrical coordinates, one obtains families of
solutions to Equation 5.3 [5, 43, 44]:

D, (s) = j; i T(k) l:;; f_ ’ A@G)f {s]de}dk (5.7)
and

_ g b O :

o= [ o5 [ A(@)f('SJdﬁ]dt: (5.8
where

s =k, £)rcos(p — B) + bk, £)[z £ ¢y (K, £ )1] (5.9
and where

e (5.10)

and ay(k, £), b(k. ¢), A(0), T(k), and D(¢) are well-behaved functions, and @, k, and ¢
are free parameters. If ¢, (k. ¢) is real, and is not a function of k and ¢ respectively,
@, (s) and @ (s) are families of limited-diffraction solutions to the wave equation
(Equation 5.3).

The following function is also a family of limited-diffraction solution to the
wave equation [3, 43, 44], which represents waves that can propagate to an infinite
distance without changing their wave shape at the speed of ¢:

D, (r, ¢,z — of) = D, (1, §) (2 — ot) (5.11)

where @, (z — ¢f) is any well-behaved function of z — ¢t and @ (r, ¢) is a solution to
the transverse Laplace equation:

18 8 1 8
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522
Bessel Beams and X Waves

5.2.2.1 Bessel Beams
If T(k)=38(k — k), f(5) =", aylk. ¢) = —ia, and b(k,¢) = ip in Equation 5.7 and
Equation 5.9, we have:

i e ; i
q)((s) = [_2;.[ A(B.)e—mrLO»W—ﬁ)dB] el(,ﬁz-—wf; (5_13)

w

where f = k" — a? is the propagation parameter, 8(k — k') is the Dirac-Delta
function. and k' = w/c > 0 is the wave number and @ is the angular frequency. If
A(B) = i"e"™, one obtains an ath-order Bessel beam [2, 3, 26, 27]:

Gp (1.8 =y (o, 2— ¢ f) =™ ] (@), n=0,1,2, ... (5.14)

where the subscript “B,,"” means an nth-order Bessel beam, o is a scaling parameter,
() is the nth-order Bessel function of the first kind, and ¢, = w/# is the phase
velocity of the wave. It is clear that Bessel beams are single-frequency waves and are
localized in transverse direction. The scaling parameter, o, determines the degree
of localization.

5.22.2 X Waves

If T(k) = B(k)e™"*, A(#) = i"e™, a,(k.¢) = —iksin¢, b(k,£) = ikcos ¢, and f(s) =
e in Equation 5.7 and Equation 5.9, one obtains an nth-order X wave [4—8], which
is a superposition of limited-diffraction portion of Axicon beams [49):

fDx“{r, N=2&y (rne,z—qt)
O
— ¥ f B(k)J,, (krsin ¢)e Hao—icoscl—atlqy - p=0,1,2, ...
0

5.15
where the subscript “X,” means an nth-order X wave, ¢, =c¢/cos{ = ¢ is(botl'i
the phase and group velocity of the wave, |¢| < 7/2 is the Axicon angle [49] of
X waves, a, is a positive free parameter that determines the decaying speed of
the high-frequency components of the wave, and B(k) is an arbitrary well-behaved
transfer function of a device (acoustic transducer or electromagnetic antenna) that
produces the wave.

Campare Equation 5.15 with Equation 5.14. It is easy to see the similarity and
difference between a Bessel beam and an X wave. X waves are multiple-frequency
waves while Bessel beams have a single frequency. However, both waves have
the same limited-diffraction property, that is, they are propagation invariant.
Because of multiple frequencies, X waves can be localized in both transverse space
and time to form a tight wave packet. They can propagate in the free space or
isotropic/homogeneous media without spreading or dispersion.

Choosing specific B(k), one can obtain analytical X wave solutions [4-8]
from Equation 5.15. One example is the zeroth-order X wave where n =0 and
B(k) = ay [S]:
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Py (rt) = Py (rd. 2 —6it) = f i, Jokr sin § je~Hee—feosce—atlg
- s )
Jrsing)? + [ay — icos¢(z — ¢14)}

(5.16)

5.2.3
Limited-Diffraction Array Beams

Renaming 1 = (x, y, 2) with 1, = (X, Yo 2o}, (7, @. 2) With (g, g, o). £ with &p, and
¢ with ¢, in the rest of the chapter, and then summing the X waves in Equation
5.15 over the index, n, with the weight, i"e ™", broadband limited-diffraction array
beams [12, 37] or pulsed steered plane waves (a plane wave is a special case of
limited-diffraction beams) are obtained, which are also limited-diffraction solutions

to Equation 5.1 (see Equation 3 of [16]) [19]:

oo
‘q).arn'ay(r()l b= Z inerlliwrcb){“(rg. ¢Qs Zp— 6 t)

n=—0G
x o ‘
- f Bk { Z i"J,, (krysin &) e‘"f%“”ﬂ:l
0 i}
% @ Mao—tcosgriza=it)l g 37

where 0 < ¢, < 27 is a free parameter representing an azimuthal angle, the
superscript “T" in dﬂm),(ro, 1) means “transmission,” and the subscript “array”
represents “array beams.” Because of the following equality [69],

x

Z 7], (lery sini pje™Pa~r) — gitkrosintricosige=6r) (5.18)

n=-0c

and the relationship,

k., = ksingpcosty =k costiy
k, = ksingpsinfr =k, siné;
k, =kcosir= Jk— k}l, > 0,wherek; = ‘/ki + kf,r = ksin&p

(5.19)

where k. and k, are projections of the transmission wave vector along the x, and
y, axes (in the rest of the chapter we assume that r, = (x;.y;.0) is a point at the
surface of a planar transducer [65]), respectively, the array beams can be written as
the following Fourier transform pair in terms of time, (see Equations 5 and 6 of
[16]):

N ik S0+ iy Y0 g 20 i
l(b.lrtay {rpt) = 2%-/. A(k)H(k)e St ke og (5.20)

—00
HT _ Ak HE) ik w0 ik yotikap 20
DT (£ ) = TLeler pryotikzpzo
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where A(k) = 2r B(k)}e "™ is a transmitting transfer function of the transducer
elements that includes both the electrical response of the driving circuits and the
electro-acoustical coupling characteristics [70] and H(w/c) = {1, w = 0: 0,0 < 0}
is the Heaviside step function [71]. The spectrum of the array beam in Equation
5.20 is an expression of a monochromatic (single angular frequency w) plane wave
steered at the direction along the transmission wave vector, KT = (L .

Similar to Equation 5.20, the response of the transducer [65] weighted with a
broadband limited-diffraction array beam [12, 37] or pulsed steered plane wave for
a point source (or scatterer) located at r; is given by the following Fourier transform
pair due to the reciprocal principle:

Oh . (rpt) = ok [ TR H(kgelo it tezogian gy
array ( 0 } 27 : ( )' ( ) {521}

—~50
DF Ty ) = “me 1) g+t ez
where the superscript “R" means “reception,” T(k) is the transfer function of
the transducer in reception, ®% (r,, w) is an expression of a monochromatic
plane wave response steered at the direction along the reception wave vector,
K* = (k,, k,, k,), where k, and k, are projections of the reception wave vector along

the x, and y; axes, respectively, and k, = /k? — k2 — k2 > 0.

5.3
Received Signals

53.1
Pulse-Echo Signals and Relationship with Imaging

If the same array transducer is used as both a transmitter and a receiver, from
Equation 5.20 and Equation 5.21, the received signal for the wave scattered from
all point scatterers inside the volume, V, of an object function, f{(r,) (representing
the scattering strength of a scatterer at point 1), is given by a linear superposition
of individual scattering sources over V. This signal can be represented by the
following Fourier transform pair in terms of time (see Equations 13 and 15 of [16])
[19]:

Ryt byt bbb, (D) = fv f (ro}itbzmy(ro, t) % q)iray(fu- Hidr,
* A(k) T (k) H(k R e SE B

= %f_w _(_cﬂ [j‘-,f (ro)e“* ke oo iy o ike -tz ) ’dro] et
> A(K)T (k) H (k _

— ﬁ MF(]CK + k‘x_r, kY + kY[" kz + kz_‘_)eflmtdk
&

B h A() T k) H (k)
Rk’twk'y-k’_: (l.')} — ‘(.)_‘F}MFUCI‘W k.'y, k)z)

(5.22)
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where

K. =k +k

x x *T

K=k +k, (5.23)
k'z=kz+kﬁ:\/k7—k§—k§+ -k —k 20

—

and “*” represents the convolution with respect to time t. This is due to the fact
that the spectrum of the convolution of two functions is equal to the product of the
spectra of the functions, and an assumption that the imaging system is linear and
multiple scattering can be ignored (first born or weak scattering approximation
[72, 73]). The 3D spatial Fourier transform in Equation 5.22 is defined the same
as that in Equation 14 of [16]. The relationship between the one-dimensional (1D)
temporal Fourier transform (spectrum) of the received echo signal that is weighted
by a limited-diffraction array beam [12, 37] and the 3D spatial Fourier transform of
the object function is the key for image reconstructions (see Equations 16, 18, and
22 of [16)).

532
Limited-Diffraction Array Beam Aperture Weighting and Spatial Fourier Transform of
Echo Signals

Using Equation 5.20 and Equation 5.21, it is clear that Equation 5.22 can be
rewritten as follows:

Rk'x-k',-.k':(w) = ﬁf‘rﬁ)$zrray(rﬂ' w)¢§r|‘a?(r0’w)drﬂ

= /\{f(r())a;:my (1’0, w)jxl.ﬁ {ji;l.kr[a:?rmy(rﬂ' “))]}dru

e T (k) H(k) d
—_ T s mo.
= le-YI ﬂ [f (1' ) q)ﬂnay(ro'w)] 2me iz,
N e T
dr, (5.24)

e

whete the last equal sign in Equation 5.24 is due to the shift theorem of Fourier
transform and the following equality (see Equation 13 of [74]):

1 B a glkn/m 4z
2 M) Az
¢ x12 + ?12 + Z(Z)

where J, ., represents a 9D Fourier transform in terms of both x; and y, at the
transducer surface and ju._-xl.ky is an inverse 2D Fourier transform in terms of both

eikzz(l e

(5.25)
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k. and k. Because the term

1 5 efka/ (a1 —x0) 4 (1 =) 425

(5.26)

27 oz, -
7 % \/("‘1 = %) + (11— Yo)? + 28

in Equation 5.24 is the kernel of the Rayleigh—Sommertfeld diffraction formula (see
Equations 3-36 of [75] and [74]), it represents the field produced at r; = (x;, y;, 0)
due to a point source (scatterer) located at r, = (%, yy. ). It is clear that if the
transmission array beam, &)Lfﬂy(ro, @), is replaced with an arbitrary beam, Equation
5.24 is still valid. The effects of the transmission beam and the object function,
[lrg), in Equation 5.24 are to modulate the phase and amplitude of secondary
point sources at 1. This proves that the limited-diffraction array beam aperture
weightings (represented by 5§r'mv(r0, w)) [16-18, 76, 77] of echo signals are identical
to the 2D spatial Fourier transform of the signals over the same transducer aperture,
1y, even for an arbitrary transmission beam. Because an arbitrary transmission
beam can always be expanded in terms of an array beam [12, 37), in principle,
Equation 5.24 or Equation 5.22 can be used to reconstruct images for more
complicated transmission schemes [75].

533
Special Case for 2D Imaging

Equation 5.22 and Equation 5.23 give a general 3D image reconstruction
formula that is similar to Equation 15 of [16]. They are readily suitable for 2D
image reconstructions. Setting one of the transverse coordinates, for example,
k, =k, = 0, one obtains a 2D imaging formula (see Equation 34 of [16]) [22]:

Fy (k. k) = " H(k)Ry o () (5.27)
where

K=k +k,.

Ko=k+k =/~ —k§.+vfk'3~kiT =0
and Fy (K, ¥ k) = A(k)T(k)F(K',, k', k'.) is @ band-limited version of the spatial
Fourier transform of the object function, the subscript “BL"” means “band-limited”
(its 2D version is given by Fy (k.. k) = A(k)T(k)F(K .. k',)). In practice. it is the

band-limited version of an object function that is reconstructed because of the
bandwidth limitation in any practical systems.

(5.28)

5.4
Imaging with Limited-Diffraction Beams

The relationship between the Fourier transform of an object function and that
of received echo signals (Equation 5.22 and Equation 5.23) is very general and




5.4 (maging with Limited-Diffraction Bearns | 145

flexible in terms of image reconstructions (including both HFR and non-HFR
methods). They include many methods developed previously [19]. For example,
(i) HER imaging (plane wave transmission without steering, that is, k, =k, =0
in Equation 5.23) [16—18]; (ii) steered plane waves (fixing ¢ and 6 in Equation
5.19 and Equation 5.23 in each transmission but varying k, and k, in image
reconstructions, that is, k.. = ksin {y cos f and k, = ksin ¢y sinfiq) [19, 22); (iii)
limited-diffraction array beam imaging, where k. and k, in Equation 5.23 are
fixed in each transmission but k, and k, are varied in image reconstructions [19,
22); (iv) two-way dynamic focusing (both k, = k. and k, =k, in Equation 5.23 for
multiple limited-diffraction array beam transmissions and receptions) [16, 42]; and
(v) multiple steered plane waves with the same steering angles in each plane-wave
transmission and reception (k, =k, = ksin {ycosfy and k, =k, = ksingy sin f
in Equation 5.23, where £y and fl; are fixed in each transimission, and are the Axicon
angle and the azimuthal angle of X waves, respectively) [78]. These special cases
are discussed in detail below:

5.4.1
High-Frame-Rate Imaging Methods

5411 Plane-Wave HFR Imaging without Steering
For a plane wave transmission without steering, one hask, =0andk, =0.From
Equation 5.22 and Equation 5.23, one obtains [22]:

Fay (ke by K) = CHERIR () (529)
where
k‘:c = kx
A (5.30)

k"zzk+kz=k+ #kl—ki—-klzZO

which is exactly the same as that of the HFR imaging method (see Equations 8
and 15 of [16]). From Equation 5.29 and Equation 5.30, 3D or 2D images can be
reconstructed with Equation 18 of [16].

54.1.2 Steered Plane-Wave Imaging
As discussed previously, Equation 5.22 and Equation 5.23 directly give a relationship
between the 3D Fourier transform of measured echo signals at the transducer
surface and the 3D spatial Fourier transform of the object function for a steered
plane wave transmission with fixed Axicon angle (steering angle for plane waves),
gy [79], of an X wave [4-8] and the azimuthal angle, 8. After getting the spatial
Fourier transform of the object function, using Equation 18 of [16]. one can
reconstruct images with an inverse 3D Fourier transform.

For steered plane waves, one obtains the relationship of the parameters between
the Fourier transform of the echoes and the object function (see Equation 5.23 and
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Equation 5.28) as follows [22]:

k' =k, + ksin&p cos by
K, =k, + ksin {psinfy (5.31)

K.=k +kcosty = [k —ki—kj+kecostr =0

Varying the free parameters, {7 and #;, from one transmission to another, one
obtains partially overlapped coverage of the spatial Fourier domain. Superposing the
resulting partially reconstructed images in space or in their spatial Fourier domain
from different transmissions, one obtains the final image. The superposition in
the spatial domain can be done either coherently (increasing image resolution
and contrast) or incoherently (reducing speckle). In the frequency domain, the
superposition can only be done coherently, which in theory, is equivalent to the
superposition in the spatial domain. The superposition will also increase the field
of view of the final image for transducers of a finite aperture [19, 22, 76, 77].

5.4.1.3 Limited-Diffraction Array Beam Imaging

In this imaging method, the following sets of four limited-diffraction array beams
[12, 27] for each pair of k,, and k,, are transmitted for 3D imaging (see Equation
5.20) [19-23];

mgnay('l) (1'0-, C} = cos (km- aC(]) COSU{YT yO)G(.ZO' t: kx-r' ky;—)

{rmy(l](rﬂ’ 1) = cos(k,, %) sin(k,, yo)G(zy, £ k. Ky ) 532

T

@ )
q)array(]} (1'0, t) = Sin(kacrx()} CO_S(k},[, YO)G(ZW b kﬁ-T’ ky,—)
Pirrayia )

(ro, 1) = sin(k,, x,) sin(k, yo)Glzo. b ko Ky )

where

% : ; A (k) H(k)er=
Glzg b ko k) = %[ A(k)H(kjetr etk = 3! l——( | Hlge ]

C
(5.33)

and where J,! represents an inverse Fourier transform in terms of .

For every set of transmissions, one obtains four areas of coverage in the
spatial Fourier domain of f(r,), denoted as R = Rgi.k'y,k! (@), R? = Rgi'k,rk:(w),
RO = Esi.k-',..k(,(“")* and R® = E}:i'k,)_.k.z (), respectively, from combinations of the
four echo signals (see Equation 5.22):

Fyy (b, + by, b+ k) = 2 H(K) (R +1R2) 4+ RO — RI)

xrt
Fan(ke + ko by — by ko) = c"-H(k){E‘“ B I:E(Z) * 1:5[3] * EM) (5.34)
Fy (k. — ko, + K, K,) = EH(R)YRY + iR — iRY) + RY)

i (k, — ko ke, — ko k) = 2H(K)(RY — iR® — (R — R

From both Equation 5.22 and Equation 5.34, high-quality 3D images that have an
equivalent dynamic focusing in both transmission and reception of the traditional
D&S method [63, 64] can be reconstructed. Varying the free parameters, kxT and
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k... from one set of transmissions to another, one obtains partially overlapped
coverage of the spatial Fourier domain. As in the case of the steered plane wave
above, superposing the resulting partially reconstructed images in space or in their
spatial Fourier domain from different transmissions, one obtains the final image.
The superposition can be done either coherently (increasing image resolution and
contrast) or incoherently (reducing speckle). The superposition will also increase
the field of view of the final image for transducers of a finite aperture [19, 22, 76,
77).

In the case of 2D imaging, Equation 5.32 and Equation 5.34 can be simplified by
setting k. =k, = 0 (similar to Equation 34 of [16]):

d)fmy,-n(x{,,zo, 1) = cos(k,, %) Gy (2g. £ Ky )
q’zﬁay(z; (30, 2. £) = sin(ky, x) G (20,8 Ky ) 5
4 L
Fi (ky + b ) = CHIRL () + 1R (@)

Fan (b, — iy k) = CHEERL 4 () = iRE L (@)

(5.35)

where G, (zg, t: k,.) = G(2g, t: k. k) with k= 0.

5.4.2
Other Imaging Methods

5.4.2.1 Two-Way Dynamic Focusing

If both k, =k and k, =k, are fixed during each transmission, from Equation
5.22 and Equation 5.23, one obtains the two-way dynamic focusing with limited-
diffraction beam method developed previously (see Equations 42 and 43, and Figure
13 of [16]) [17, 18, 42]:

Far(K o K K) = CHERRe e, 1. (@) (5.36)
where
K, =2k,
B,=2k, (5.37)
K,=2k, =0

which represents an increased Fourier domain coverage resulting in a higher
image resolution. The increased Fourier domain coverage may be equivalent to a
dynamic focusing in both transmission and reception in theory, Choosing both k,
and k, on rectangular grids, one may not need to do any interpolation in the spatial
Fourier domain of the object function along these directions. This method also
increases the image field of view as compared to the HFR imaging method above
[16]. However, because only one line in the Fourier domain is obtained from each
transmission, this method may be slow for 3D imaging. In addition, to reconstruct
an image of a large field of view, the sampling interval of both k, and k, must be
small so that they may further increase the number of transmissions needed and
thus decrease the image frame rate.
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5.4.2.2 Multiple Steered Plane Wave Imaging
Using spherical coordinates in Equation 5.19 or the transmission wave vector,
K' = (k, .k k, ), one obtains (see Equation 8 and Figure 2 of [16]) [22):

k.. = ksin ¢y cosfp = k;. cosfy

k. = ksingysindy = k,, sin; (5.38)
k., =kcosir=, [k — k%r >0

where ¢ is the Axicon angle [49, 79] of X wave [4-8] or the steering angle of a plane
wave, #3 is an angle that determines components of the transmission wave vector
in both x; and y, axes (for a given transmission, both ¢; and é; are fixed), and

ki =ksing = [k + k2, (5.39)

is the magnitude of the transverse component of the wave vector in the (x;,y,)
plane.

Let k., =k, =ksingrcosty and k, =k, = ksin¢g; sinéy, the Fourier domain
of the object function can be filled up in spherical coordinates, (2k, ¢;.6;), through
multiple transmissions. That is, for each plane wave transmission, an echo signal
is received with a plane wave response from the same direction. From Equation
5.22 and Equation 5.23, one obtains Equation 5.36 with the following parameters
for 3D imaging:

k', = 2ksin ¢y cos fp
kK, = 2ksin¢; sindy (5.40)
.=k +k =2Zkcostz =0

Soumekh [78] has obtained a similar result from a linear system modeling
approach in polar coordinates for 2D imaging. Because the samples in the spatial
Fourier domain are very sparse for a larger k (see Equation 5.40), a large number of
transmissions at differentangles are required to obtain high-frequency components
accurately. Compared to the two-way dynamic focusing with limited-diffraction
beam approach, more transmissions may be needed to get an adequate coverage of
the Fourier space (domain) and thus the image frame rate will be low.

5.5
Mapping between Fourier Domains

To reconstruct images in Equation 5.22 and 5.23 using the fast Fourier transform
(FFT) [80), it is necessary to obtain the Fourier transform of the object function at
rectangular grids of (K, k', ¥',). However, the Fourier transform of echo data is
known enly on rectangular grids of (k.. k. k) (notice that digitization of echo signals
is in an equal time interval and that an array transducer has an equal distance
between adjacent elements [65]). which is related to (k',, k', ¥.) by Equation 5.23.
In this section, nonlinear mapping of data with Equation 5.23 will be given for two
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special cases (i.e., the steered plane wave and the limited-diffraction array beam
transmissions) and for 2D imaging. Mappings for other special cases and for 3D
imaging can be obtained similarly [19, 22].

5.5.1
Mapping for Steer Plane Wave Imaging

As mentioned before, images can be reconstructed with steered plane waves using
Equation 5.31 or Equation 5.28. To steer a plane wave, linear time delays are applied
to transducer elements:
tly) = (5.41)

where x, € (—D/2, D/2) is the position of the center of the element of an array
transducer, D is the size of the transducer aperture, and ; is the steering angle
that is fixed for each transmission. To make the system causal, an additional
constant delay may be added to the delay function (Equation 5.41) in practical
implementations [19, 22].

Assuming k, = ksin ¢r, from Equation 5.28 or the 2D case of Equation 5.31,
one obtains an inverse function for given values at (k',, k'_):

k,=k,—ksingg
3 K24 k2 (5.42)
= Zk'z cos CT ‘|‘ Zk’x Siﬂ CT

To exclude evanescent waves, the condition for steered plane waves is |k.| <k
(notice that k > 0 and ¢;| < 7/2). With this condition, one set of boundaries in
(K',., k) can be determined by setting k, = kand k, = —k, respectively, in Equation
5.28:

e ﬁ%k k=%
By (5.43)
TR RV
singp —1

If the imaging system is band limited, that is, k., <k <k,,,,, another two
botindaries can be added using Equation 5.28 and k= ksin &

(ka = i“Tmin sin t’I)z s (k,z - km.in cos {T)Z = kﬁﬁn' if kx = kmin

K 5.44
(K, — Ko 10 E0)% - (k2 — Ky €08 &p) = i 3 ey = Koy i

Outside of the region determined by the boundaries, values at (k' k') are simply
set to 0. The mapping can be done with bilinear interpolation or any non-uniform
fast Fourier transform (NUFFT) approach [81]. To increase the interpolation
accuracy for the bilinear interpolation, data in the echo Fourier domain can be
densified by zero padding or other signal processing methods as longas the original
data are not aliased [82].
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5:5.2
Mapping for Limited-Diffraction-Beam Imaging

5.5.2.1 General Case
For limited-diffraction array beam imaging, an inverse function of Equation 5.28
can be derived for given values at (k',. k') [19, 22]:

k, =k =k

2
ﬁkﬁwg—(kx—km)l) + 42k, — k) (5:45)
k =
2

To exclude evanescent waves, both [k, | <k and |k, | <k must be satisfied in
Equation 5.28 (where k > 0). For limited-diffraction array beam weighting, k., is
a constant in each transmission. This means that the transmit aperture weighting
function is the same for all frequency components, k, in each transmission. From
these conditions, one set of boundaries in (k',, k',) can be found by setting k., =k
or k, = —kin Equation 5.28:

K,k ) —ki=K, if k,=Fkork=—Fk (5.46)

Z

which is a hyperbolic function with its center shifted to (k,,,0). The hyperbolic
function has two branches that intersect with the k', axis at two points, that is,
at k', = 0and k', = 2k, respectively. Another boundary can be found by setting
k., =kork, =—kin Equation 5.28, which gives a half circle centered at (k. 0)
with a radius of |k, | that intercepts with the hyperbolic curves at (0,0) and (0. 2k, ),
respectively:

K.o—k Y +ki=k, if k, =k or k. =—k 5.47)
% XT z X7 *7

X1
If the imaging system is band limited, that is, k;, <k <k

5.28 another two circular boundaries can be obtained:

(k[x'i kry)l ¥ (k'z Y k%nm - kg_cr}l = kfﬂin’ if k= km’m = kx-‘- {5'48)

from Equation

max’

and

(= by 2 (K = g = 1) = Ko 3F b= e =

max THax'

(5.49)

T

which further limit the size of the mapping area in (K, k',). As k,, increases, low
frequency components cannot be transmitted to illuminate objects, which could
lower the energy efficiency. Outside of the region determined by the boundaries,
values at (k',, k,) are simply set to 0. Similar to the steered plane wave case above,
the mapping can be done with bilinear interpolation or any NUFFT approach
[81]. To increase the interpolation accuracy for the bilinear interpolation, data in
the echo Fourier domain can be densified with the zero padding or other signal
processing methods as long as the original data are not aliased [82].

For limited-diffraction array beam transmissions, both sine and cosine aperture
weightings are applied and thus the echoes need to be combined using Equation
5.35 to get two new sets of echoes before the mapping process above. The
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combination could be done in either echo or echo Fourier domain. Images can be
reconstructed from the mapped data (see the paragraph below Equation 5.34).

55.2.2 Special Case
For a single plane wave imaging to achieve a high image frame rate, that is, letting
k,, = 0, from Equation 5.45 we have Equation 40 of [16]:

kx = k;)-'
Ki+K (5.50)
2k,
Notice that Equation 5.50 can also be obtained from Equation 5.42 by letting
k,, = 0. To exclude evanescent waves, k.| < k must be satisfied in Equation 5.50.

k=

5.6
High-Frame-Rate Imaging Techniques—Their Improvements and Applications

5.6.1
Aperture Weighting with Square Functions to Simplify Imaging System

5.6.1.1 Applied to Transmission

Traditional imaging methods such as D&S [63, 64] require a phase delay for each
element of an array transducer to focus or steer a transmit beam. The phase delay
makes it difficult to share transmitters among transducer elements, As a result,
a large number of transmitters are needed, especially for an array transducer
that has many elements such as a 2D array. Although limited-diffraction array
beam imaging methods in Equation 5.32 and Equation 5.34 (or Equation 5.35)
[22, 23] may reduce the number of transmitters, it would still need a large
number of transmitters to realize the exact sine and cosine aperture weightings
[19-23].

The need of a large number of transmitters may cause problems. For example,
modern transmitters are linear high-voltage radio-frequency (RF) power ampli-
fiers [30] to accommodate the need of applications such as nonlinear imaging
[83] and coded excitations [84]. To maintain a good linearity over a broad band-
width at a high output voltage, the transmitters may consume large amounts of
power and thus they must be physically large to dissipate heat and avoid short
circuiting. In addition, to produce exact sine and cosine weightings with an array
transducer, each transducer element may need a complicated switching network
to connect among a large number of transmitters from one transmission to
another.

To reduce the number of transmitters, a method for limited-diffraction ar-
ray beam imaging with square-function aperture weightings was developed in
which the sine and cosine aperture weighting functions in Equation 5.32 and
Equation 5.34 (or Equation 5.35) are approximated, respectively, with the follow-
ing square-functions (where x is an argument of the sine or cosine function
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and should be replaced with corresponding variables in Equations 5.32 and 5.35)
[19, 21};

w () = 1, sin(x) =0 (5.51)
-1, singx) <0 )

and
1, >0
w(x) = e (5.52)
—1. cos(x) <0
H ks k... or both k_ and k, in Equation 5.32 and Equation 5.34 (or Equation

5.35) are zero, the corresponding sine functiens are set to zero, that is, these
beams are not transmitted. With the square-function approximations, a 3D
imaging system may be developed with only two transmitters [19, 21]: one has an
output voltage of a fixed amplitude, and the other has an inverted output from the
first, Each transducer element is then connected to either one of the transmitters
through an electronic switch that is controlled by a digital logic, depending on the
sign of the sine and cosine functions at the position of the element. Combined with
the high computation efficiency of the FFT algorithm used in the HFR imaging
method [16-18], simplified HFR and high-quality 3D imaging systems can be
reconstructed.

The square-function aperture weightings can also be implemented with a single
transmitter to further reduce the number of transmitters (removing the inverting
transmitter and setting the negative weighting amplitude to zero). In this case,
transducer elements are switched on or off to the single transmitter before each
transmission, which may simplify the switching circuits, However, the direct
current (DC) offset in the weighting functions needs to be compensated during

‘the image reconstruction. This may require additional transmissions with a DC

weighting that may reduce the image frame rate and complicate the signal
processing although the additional transmissions may be used to enhance the
signal-to-noise ratio (SNR) for the center strip of the image. In addition, because
about half of the transducer elements are not activated in each transmission (except
for k. =k, = 0), the SNR of echo signals may be reduced (except for the DC
weighting mentioned above).

5.6.1.2 Applied to Reception

It is worth noting that, because of the reciprocal relationship in Equation 5.22,
where Cbi{my(ru,t) and C!D;_ray(ro, f) are exchangeable, the square-function aperture
weightings can also be applied to the reception beam forming to approximate the
limited-diffraction array beam aperture weightings of echo signals [16-18, 20, 21,
76, 77]. This may simplify the hardware needed to produce R, i ot by (8)
in Equation 5.22 for all k, and k, given a pair of k, and k, in the transmission
[20, 21]. In particular, with the square-function weighting in reception, simple
analog summation and subtraction amplifiers could be used to produce all the
required spatial frequency components at k, and k, in real-time to replace some of
high-speed FFT [80] circuits [20, 21].
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5.6.2
Diverging Beams with a Planar Array Transducer to Increase Image Frame Rate

Toincrease the field of view while maintaining a high image frame rate, a diverging
beam can be used in transmission [25]. This method still uses Equation 5.31 and
Equation 5.42 to reconstruct images approximately although, in theory, steered
plane waves in transmissions should be used. Results show that with a few degrees
of diverging angles, the effects on the quality of reconstructed images are not
significant while image areas covered are increased [25].

5.6.3
Diverging Beams with a Curved Array Transducer to Increase Image Field of View

Another way to increase the field of view while maintaining a high image frame
rate is to use a curved array transducer [24]. The advantage of using a curved array is
that no time delays are necessary to produce a diverging beam and thus the number
of transmitters needed may be reduced. However, with curved array transducers,
the FFT [80, 85], in theory, may be difficult to use in image reconstructions, and
thus the amount of computation may be increased.

5.6.4
Other Studies on Increasing Image Field of View

Methods have also been developed to increase the field of view of the HFR imaging
method [16-18] in 2000 [76]. These methods use various techniques such as steered
plane waves and limited-diffraction beams to increase the image field of view (also
see claims 8 and 9 for steered plane waves and claim 3 for limited-diffraction beams
in [18]) and were further studied in [19-22].

5.6.5
Coherent and Incoherent Superposition to Enhance Images and Increase Image Field
of View

Due to a finite size of practical array transducers and the limitation of window
sizes of the human body for ultrasonic imaging, each image reconstructed with ¢y
or ky, (ky, =k,, in the 2D case) in Equation 5.42 or Equation 5.45 has a limited
spatial exteﬁs;on (19-22] and thus the image field of view is limited. To increase
the image field of view, multiple images reconstructed with various &r or ky, or
need to be combined. There are two ways to combine images. One is the coherent
superposition that increases image resolution, reduces noise, and enhances image
contrast. The other is incoherent superposition, which reduces image speckle noise
rather than increasing image resolution [77].
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5.6.6
Nonlinear Image Processing for Speckle Reduction

In addition to the inmcoherent image superposition mentioned above, various
nonlinear image processing methods have been used to reduce speckles of the
HFR images [77]. The methods used include frequency compounding, Axicon
angle compounding, and the steering angle compounding.

5.6.7
Coordinate Rotation for Reduction of Computation

As ¢ in Equation 542 or k; in Equation 5.45 increases, the high-frequency
components in the spatial echo Fourier domain also increase. This needs more
points in the spatial Fourier domain to reconstruct an image, increasing the amount
of computation. To reduce the computation, coordinates of transmission beams are
rotated first to make ¢ = 0 or k,_ = 0 in the echo Fourier domain to reconstruct
images. Then, the reconstructed images are rotated back accordingly to recover the
original orientations of the images before the superposition to form an image of a
large field of view [26].

5.6.8
Reducing Number of Elements of Array Transducer

As mentioned previously, a 2D array transducer normally has tens of thousands
of elements [65]. In addition, each transducer element needs an electronic circuit
to handle the signals. Therefore, it is expensive to make such an array and its
associated electronics and thus it is desirable to reduce the number of transducer
elements whenever possible. A study [27] has been conducted for the trade-off
between the number of elements of an array transducer and the quality of the HFR
images [16—18]. Results show that it is possible to reduce the number of elements
while maintaining a reasonable image quality [27].

5:6.9
A Study of Trade-Off between Image Quality and Data Densification

As mentioned previously, a nonlinear mapping between the echo Fourier domain
and the object Fourier domain is necessary in order to use the FFT to reduce
computations in image reconstructions. To increase the accuracy of the mapping,
data in the echo Fourier domain may need to be densified before interpolation
techniques such as the bilinear interpolation are used. However, there is a trade-off
between image quality and an increase of the amount of computations due to the
data densification. Therefore, a study on such a trade-off has been conducted for the
HFR imaging [82]. Results show that reasonably good images can be reconstructed
with only a small amount of densification of the echo data. If the non-uniform FFT
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method [81] is used for the mapping, a better trade-off could be possible at the
expense of an increased complexity in interpolations.

5.6.10
Masking Method for Improving Image Quality

Because the image reconstruction theory in this paper is obtained under ideal
assumptions, for example, r, = (x;,y,, 0) is continuous and its spatial extension is
infinity, and practical array transducers for transmitting and receiving waves always
have a finite size and have discrete coordinate values, images reconstructed contain
not only plane wave components defined in Equation 5.22, but also include artifacts
due to the imperfection of the practical imaging systems. Therefore, it is important
to block the unwanted components of reconstructed images with spatial masks.
The masks are usually designed to remove components that are in directions other
than the designated transmission directions given by &y or ki (k, =k, in the
2D case) in Equation 5.42 or Equation 5.45. Before the coherent superposition
of images reconstructed with various ¢ or k, ., proper masks are applied to each
component image to improve image quality [87].

5.6.11
Reducing Clutter Noise by High-Pass Filtering

As the plane wave [19, 22] or waves that have small divergence angles [25] have a
relatively flat wave front, in the HFR imaging, it is observed that there is clutter
noise that appears in images as strips that are generally in parallel with the surface
of the transducer. The clutter noise in the images is most obvious in anechoic areas,
at deeper depths where receiver gain is high and echo signals are weak, and when
the steering angle is small. The noise is caused by imperfect receiver electronics,
multiple reflections among parallel objects, and multiple reflections between the
objects and the transducer surface. To reduce the clutter noise and improve the
quality of the HFR imaging method, a method using a spatial high-pass filtering of
echo signals along axes that are in paralle] with the surface of the transducer has
been developed [88]. '

5.6.12
Obtaining Flow or Tissue Velocity Vectors for Functional Imaging

Because the imaging methods with steered plane waves or limited-diffraction array
beams reconstruct complete images (as opposed to a line of image) with only one
or a few transmissions, velocity vector images of moving objects such as the heart
and the blood flow can be reconstructed with the HFR imaging methods [21, 23,
28], This is different from the traditional Doppler method that only obtains the
velocity vector component along the transmit beam and can be used for functional
imaging for more accurate diagnoses of diseases [21, 28].
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5.6.13
Strain and Strain Rate Imaging to Obtain Tissue Parameters or Organ Functions

The strain and strain rate imaging is important for accurate diagnoses of heart
diseases. As mechanical properties of heart tissues change due to a lack of blood
perfusion caused by blocked or partially blocked coronary arteries, the strain and
strain rate of the heart may also change. The HFR imaging is especially useful for
obtaining images of strain and strain rate of fast moving objects such as the heart
[29, 66, 67] for medical diagnoses.

5.6.14
High-Frame-Rate Imaging Systems

To verify the HFR imaging theory developed above, a prototype HFR imaging
system was developed [19, 21, 86]. This system has 128 independent linear high-
voltage (up to =144V peak) and broadband RF (0.05-10 MHz) power amplifiers
[30] for producing transmit beams and 128 independent high-gain and low-noise
RF receivers. Images of a cycle of the beating heart of the author have been
reconstructed with data acquired with this system and are displayed as a video
clip [19].

In addition to the prototype HFR imaging system [19. 21, 86], a potential
commercial HFR imaging system is proposed in Figure 5.1 [21].

5.7
Conclusion

As a continuation of the first volume of this book [1], this chapter has provided
a detailed theoretical background of limited-diffraction beams [9-15, 62] such
as Bessel beams [2, 3] and X waves [4-8], and applied the theory to develop
the HFR imaging methods [16-23]. Various techniques for improving the HFR
imaging methods and applications of the methods have been reviewed, including
a prototype HFR imaging system [19, 21, 86] for verifying the developed HFR
imaging methods experimentally and an illustration of a proposed commercial
HFR imaging system (Figure 5.1 in [21]). The chapter can serve as a basis for future
developments of novel imaging methods based on limited-diffraction beams.
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