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Focused beams for high-resolution imaging and
other applications
Jian-yu Lu
Department of Bioengineering, The University of Toledo, Toledo, Ohio, 43606; jian-yu.lu@ieee.org

Analytical solutions were obtained for limited diffraction beams such as Bessel beams and X waves, as well 
as for conventional plane wave, with or without focus in both rectangular and polar coordinates. Using a 
focused plane wave in transmit and a focused Bessel beam in receive, a high-resolution C-mode image that 
breaks the diffraction limit of the conventional focused plane wave was obtained using a wave source of 50-
mm diameter, 2.5-MHz frequency, 50-mm focal length, and 0.6-mm wavelength for an object at the focus. 
The two-way (pulse-echo) full-width-at-half-maximum (FWHM) lateral resolution of the image obtained 
was 0.56 mm. As comparison, the FWHM lateral resolution of the image obtained with the focused plane 
wave in both transmit and receive was 0.66 mm. The diffraction limit calculated with the FWHM of the 
square (two-way) of the Jinc function was 0.62 mm. Besides high image resolution, the focused Bessel 
beam also has a larger depth-of-field and its higher sidelobes were suppressed by the focused plane wave in 
transmit. In addition, using the analytical solutions developed, an ultrasound image (beam pattern) was 
produced using a commercial Verasonics 32x32 Matrix Array for visual (retina) stimulation of the brain to 
help blind people to see objects.
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1. INTRODUCTION

Limited-diffraction beams such as Bessel beams1-3 and X waves4-5 have been studied extensively in the
past few decades because they have a very large depth of field. For example, these beams have been applied to 
pulse-echo medical imaging6, blood flow velocity vector imaging7, nondestructive evaluation (NDE) of 
materials8, tissue characterizations9, fast computations of spatial distribution of waves produced by 2D array 
transducers10, X-wave transformation11, plane-wave 2D and 3D high-frame rate imaging11-15, and other 
applications. In addition, because of the spatially invariant properties of the X waves, they have also been 
studied extensively in Physics16.  

Although limited-diffraction beams have many applications, they have not been studied when they are 
focused by a lens or using electronic focusing. In this paper, a C-mode image (the imaging plane is 
perpendicular to the beam axis) was produced using a focused plane wave in transmit and a focused zeroth-
order Bessel beam in receive. It is found that the image produced has a high lateral resolution that exceeds the 
diffraction limit determined by a fixed aperture size and focal length of a planar radiator. Even though limited-
diffraction beams are focused, it is found that they still have a larger depth of field as compared to 
conventional focused beams. In the image, the sidelobes of the Bessel beam were suppressed by the focused 
plane wave in transmit.  

In addition, in this paper, detailed theoretical analyses of both focused and unfocused waves in both 
rectangular and polar coordinates have been performed. From the theory, an image (beam pattern) was 
produced for visual (retina) stimulation of the brain to help certain blind people to see an ultrasound version of 
the optical image17.  

2. THEORETICAL PRELIMINARIES
A. TIME-VARYING WAVES OR PULSES

The isotropic homogenous scalar wave equation is given by (Goodman, Eq. 3-12)18:
2 2 2 22

2 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2

0 0

( , , ; ) ( , , ; ) ( , , ; ) ( , , ; )1 1 0∂ Φ ∂ Φ ∂ Φ ∂ Φ∂ Φ∇ Φ − = + + − =
∂ ∂ ∂ ∂ ∂

x y z t x y z t x y z t x y z t
c t x y z c t

, (1)  

where 2∇  is the Laplace operator, 0 0( , , ; )Φ x y z t  is a function representing a spatial and time-varying wave or 
pulse propagating in an isotropic homogeneous medium and is a solution to the wave equation. 0 0( , , )x y z  is a 
point in the three-dimensional (3D) space, z  is the distance that is perpendicular to the wave source (here we 
assume that the wave source such as ultrasound transducer is on the 1 1−x y  plane), t  is the time, and c  is the 
speed of wave in the medium. According to Bracewell (P. 6)19, the Fourier transform of the wave is given by:  

0 0 0 0 0 0( , , ; ) { ( , , ; )} ( , , ; ) ωω
∞

−∞

Φ = Φ = Φ∫ i t
tx y z x y z t x y z t e dtF , (2)  

where 2ω π= =f kc  is the angular frequency, f  is the frequency, / 2 /ω π λ= =k c  is the wave number, λ  is 
the wavelength, tF  is the Fourier transform in terms of time, 1= −i , and the wave filed 0 0( , , ; )ωΦ x y z
satisfies the Helmholtz equation (Goodman, Eq. 3-18)18:  

2 2
0 0( ) ( , , ; ) 0ω∇ + Φ =k x y z . (3)  

Thus, the inverse Fourier transform, 1
ω
−F , of the wave field in terms of ω  can be used to obtain any time-

varying wave or short pulse (Bracewell, P. 6)19:  

1
0 0 0 0 0 0

1( , , ; ) { ( , , ; )} ( , , ; )
2

ω
ω ω ω ω

π

∞
− −

−∞

Φ = Φ = Φ∫ i tx y z t x y z x y z e dF . (4)  
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B. THE GREEN’S THEOREM

To solve Eq. (3), Green’s theorem can be used (Goodman, Eq. 3-14)18:

2 2( ) ( )∂ ∂ΦΦ∇ − ∇ Φ = Φ −
∂ ∂∫∫∫ ∫∫

V S

GG G dV G ds
n n

, (5)  

where Φ  and G  are functions whose first and second partial derivatives are single-valued and continuous 
within and on the surface S  that encloses the volume V , G  is a complex-valued Green’s function, and /∂ ∂n  
is a partial derivative in the outward normal direction at each point on S . If G  has a discontinued point in V , 
this point can be excluded by modifying the surface to ' ε= +S S S , where εS  is a small sphere of radius ε .  

Let 01
0 0 1 1 01( , , ; , ) /= = ikrG G x y z x y e r  be a spherical wave originating from a point 0 0( , , )x y z  (Goodman, Eq. 

3-15)18, where 01r  is the distance between 0 0( , , )x y z  and a point 1 1( , )x y  on 'S . Excluding the discontinuous 
point 0 0( , , )x y z , Eq. (5) becomes (Goodman, Eq. 3-19)18:  

'

( ) ( ) ( ) 0
ε

∂ ∂Φ ∂ ∂Φ ∂ ∂ΦΦ − = Φ − + Φ − ≡
∂ ∂ ∂ ∂ ∂ ∂∫∫ ∫∫ ∫∫

S S S

G G GG ds G ds G ds
n n n n n n

, (6)  

i.e.,

( ) ( )
ε

∂ ∂Φ ∂ ∂Φ− Φ − = Φ −
∂ ∂ ∂ ∂∫∫ ∫∫

S S

G GG ds G ds
n n n n

. (7)  

Eq. (6) is true because both Φ  and G  satisfy the Helmholtz equation in Eq. (3) on 'S . Since Φ  is continuous 
everywhere on S  and at 0 0( , , )x y z , as 0ε →  the left-hand-side of Eq. (7) becomes (Goodman, Eq. 3-21)18:  

010 0 0
01

2
0 00

lim ( ) lim ( cos( , ) ) lim ( cos( , ) ( ) )

1lim(4 ){ [( ) cos( , )] ( ) } 4 ( , , ; )

ε ε ε

ε

ε ε ε

ε ε

ε

ε
ε ε

πε ε π ω
ε ε ε

→ → →

→

∂ ∂Φ ∂ ∂Φ ∂ ∂Φ− Φ − = − Φ − = − Φ −
∂ ∂ ∂ ∂ ∂ ∂

∂Φ= − Φ − − = − Φ
∂

∫∫ ∫∫ ∫∫
ik

S S S

ik ik

G G G eG ds n r G ds n ds
n n r n n

e eik n x y z
n

, (8)  

where 01 ε=r  on εS  with surface area 24πε , cos( , ) 1ε = −n  is a cosine of the angle between the two vectors n
and ε . Inserting Eq. (8) into Eq. (7), one obtains the integral theorem of Helmholtz and Kirchhoff (Goodman, 
Eq. 3-21)18:  

0 0
1( , , ; ) ( )

4
ω

π
∂Φ ∂Φ = − Φ
∂ ∂∫∫

S

Gx y z G ds
n n

. (9)  

The surface area S  in Eq. (9) can be reduced to a planar area ∑ , where the wave source (such as a transducer) 
is located, under the assumption of the Sommerfeld radiation condition (Goodman, Eq. 3-22)18 and the two 
Kirchhoff’s assumptions (the assumptions or the Kirchhoff’s boundary conditions are valid when λ∑ ) 
(Goodman, P. 44)18, i.e., (Goodman, Eq. 3-24)18:  

0 0
1( , , ; ) ( )

4
ω

π ∑

∂Φ ∂Φ = − Φ
∂ ∂∫∫

Gx y z G ds
n n

. (10)  

C. RAYLEIGH-SOMMERFELD SOLUTIONS FOR SINGLE-FREQUENCY WAVE FIELD

The two Kirchhoff boundary conditions above are inconsistent with the potential field theory (Goodman,
P. 46)18. This inconsistency can be removed by choosing the following Green’s function since it does not need
to assume that both Φ  and its normal derivative are zero in the planar area outside ∑  (Goodman, Eq. 3-31)18:

01 01 01 01

0 0 1 1 0 0 1 1
01 01 01 01

( , , ; , ) 0   (on ),   or   ( , , ; , )− − + += = − ≡ ∑ = = +
ikr ikr ikr ikre e e eG G x y z x y G G x y z x y
r r r r

, (11)  
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where 01r  and 01r  are the distances from a point at 0 0( , , )x y z  to a point 1 1( , )x y  on ∑  and from the mirror point 
0 0( , , )−x y z  of 0 0( , , )x y z  to 1 1( , )x y  (i.e., the two points are mirroring in terms of the 1 1−x y  plane). The normal 

derivatives of −G  and +G  above are given by (Goodman, Eq. 3-33)18:  
01 01

01

01 01
01 01 01 01 01

01 01
01 01

1 1( ) [cos( , ) cos( , )] 2( ) ,

1and ( ) [cos( , ) cos( , )] 0   (on ),

−

+

∂
= − − = −

∂

∂
= − + ≡ ∑

∂

ikr ikr

ikr

G e e zik n r n r ik
n r r r r r
G eik n r n r
n r r

(12)  

where 01 01 01cos( , ) cos( , ) /= − =n r n r z r is the cosine of the angles between the two vectors n  and 01r , and
vectors n  and 01r  (both 01r  and 01r  are pointing towards the point 1 1( , )x y  on ∑ ); and n  is the vector that is
normal to ∑  and is outward pointing from the wave volume 0 0( , , )x y z . Using 0− ≡G  (Eq. (11)) and 

/ 0+∂ ∂ ≡G n  (Eq. (12)), Eq. (9) can be simplified to the first and the second Rayleigh-Sommerfeld solutions:  

0 0 1 1 0 0 1 1
1 1( , , ; ) ,  and  ( , , ; ) ,   respectively 

4 4
ω ω

π π

∞ ∞ ∞ ∞
−

+
−∞ −∞ −∞ −∞

∂ ∂ΦΦ = − Φ Φ =
∂ ∂∫ ∫ ∫ ∫
Gx y z dx dy x y z G dx dy
n n

. (13)  

Unlike Eq. (10), the first and second Rayleigh-Sommerfeld solutions in Eq. (13) only need to know either Φ
or /∂Φ ∂n . In fact, Eq. (10) is an arithmetic average of the two solutions in Eq. (13) (Goodman, Eq. 3-50)18. 

Using /−∂ ∂G n  in Eq. (12), from the first Rayleigh-Sommerfeld solution in Eq. (13), the Rayleigh-
Sommerfeld diffraction formula is obtained (for simplicity, in the remaining of the paper the first Rayleigh-
Sommerfeld solution in Eq. (13) will be used, also, 1 1 1 1( , ; )ωΦ = Φ x y  is used to represent wave field at the 
source plane 1 1( , , 0; )ωΦ =x y z ) (Goodman, Eq. 3-41)18:  

01 01

0 0 1 1 1 1 1 1 1 12
01 01 01 01 01

1 1( , , ; ) [2( ) ] (1 ) ( , ; )
4 2

λω ω
π λ π

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

Φ = − − Φ = + Φ∫ ∫ ∫ ∫
ikr ikre z z i ex y z ik dx dy x y dx dy

r r r i r r
. (14)  

D. FRESNEL APPROXIMATION

I. IN RECTANGULAR COORDINATES

Eq. (14) can be simplified if 2 2 2
0 1 0 1( ) ( )− + −x x y y z  and the 01r  approximation below can be used in the 

exponential term and 01 ≈r z  can be used in the denominators of Eq. (14) (Goodman, Eq. 4-13)18:  

2 2 2 2 2 20 1 0 1 0 1 0 1
01 0 1 0 1

1 1 11 ( ) ( ) [1 ( ) ( ) ] [( ) ( ) ]
2 2 2

− − − −
= + + ≈ + + = + − + −

x x y y x x y y
r z z z x x y y

z z z z z
. (15)  

Eq. (14) thus simplified is called the Fresnel diffraction integral (or the Fresnel approximation of the Rayleigh-
Sommerfeld diffraction formula) and is given by the following Fourier transform (Goodman, Eq. 4-17)18:  

2 2 2 2 0 0
0 0 1 1 1 1

2 2 2 2
0 0 1 1

1 1 0

( ) ( ) [( ) ( ) ]
2 2

0 0 1 1 1 1 1

( ) ( )
2 2

, 1 1 1

( , , ; ) (1 ) [ ( , ; ) ]
2

(1 ) { ( , ; ) }( ,
2

λω ω
λ π

λ ω
λ π

∞ ∞
+ + − +

−∞ −∞

+ +

Φ = + Φ

= + Φ

∫ ∫
x yk kikz i x y i x y i k x k y

z z z z

k kikz i x y i x y
z z

x y x

e ix y z e x y e e dx dy
i z z

e i e x y e k
i z z

F
0
)yk

, (16)  

where 
1 1,x yF  is the Fourier transform in terms of 1x  and 1y , and 

0xk  and 
0yk  are given by:  

0 0 0 0

2 2 2 20 0 0 0 0
0 0 0 0 0 0cos cos ;   sin sin ;   ;   φ φ φ φ= = = = = = = + = = +x y x y

x r y r r
k k k k k k k k k k k k r x y

z z z z z
, (17)  

where 0k  and φ  are variables in the polar coordinates in the Fourier domain. Eq. (16) is generally valid as 
long as the integral is dominated by values at 1 0≈x x  and 1 0≈y y , even Eq. (15) is not necessarily satisfied. If 
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z  is very large so that the so called “antenna designer’s formula” 22 / λ>z D  is satisfied, where D  is the 
diameter of ∑ , Eq. (16) can be further simplified as the Fraunhofer approximation (Goodman, Eq. 4-25)18.  

II. IN POLAR COORDINATES

Using polar coordinates 1 θ−r  in the 1 1−x y  plane where the wave source is located, where 1 1 cosθ=x r , 

1 1 sinθ=y r , and 2 2
1 1 1= +r x y , the terms in the integration in Eq. (16) can be written as  

2 2 2 0 0
1 1 1 1 1

0 1 0 1
( ) [( ) ( ) ] (cos cos sin sin ) cos( )2 2

1 1 1 1 1( , ; ) ( , ; )    and     φ θ φ θ θ φω θ ω
+ − + − + − −Φ = Φ = =

x yk ki x y i r i k x k y ik r ik rz z z zx y e r e e e e . (18)  

Inserting Eq. (18) into Eq. (16) and transforming from rectangular to polar coordinates, we have:  
2 2

0 1
0 1 cos( )2 2

0 0 1 1 1 1
0

( , , ; ) (1 ) [ ( , ; ) ]
2

π
θ φ

π

λω θ ω θ
λ π

∞
− −

−

Φ = + Φ∫ ∫
k kikz i r i r ik rz ze ix y z e r e e r dr d

i z z
. (19)  

Since the second equation in Eq. (18) has the following identity (Morse & Feshbach, P.620)20:  

0 1 0 1cos( ) ( ) cos( ) ( ) ( ) ( )
0 1 0 1( ) ( ) ( )θ φ θ φ θ φ θ φ

∞ ∞
− − − − − − − − −

=−∞ =−∞

= = − =∑ ∑ik r i k r n i n n in
n n

n n
e e i J k r e i J k r e , (20)  

and the wave source in the square brackets of Eq. (19) is always periodic ( 2π  period) in terms of θ  and thus it 
can be represented as a Fourier series pair (Baddour, Eqs. (14) and (15); Cornacchio & Soni, Eq. (5))21-22:  

2 2
1 1

2
2 2

1 1 1 1 1 1 1 1
0

1( , ; ) ( ; ) ,    with coefficients:   ( ; ) ( , ; )
2

π
θ θθ ω ω ω θ ω θ

π

∞
−

=−∞

Φ = Φ Φ = Φ∑ ∫
k ki r i r in inz z

n n
n

r e e r e r r e d , (21)  

Eq. (19) can be represented with an n th-order Hankel transform {}nH  as follows (Baddour, Eqs. (1), (18), and 
(19); Cornacchio & Soni, Eqs. (6) and (7))21-22:  

2 2
0 1

2 2
0 1

( )2 2
0 0 1 1 0 1 1 1

0

2 2
1 1 0 1 1 1

0

( , , ; ) (1 ) [ ( ; ) ][ ( ) ]
2

2 ,
(1 ) {[ ( ; ) ( ) ][ ]}

0, Otherwise2

π
θ θ φ

π

φ

λω ω θ
λ π

πλ ω
λ π

∞ ∞ ∞
− − −

=−∞ =−∞−

−

Φ = + Φ

=⎧
= + Φ ⎨

⎩

∑ ∑∫ ∫
k kikz i r i r im n inz z

m n
m n

k kikz i r i r n inz z
m n

e ix y z e e r e i J k r e r dr d
i z z

m ne i e e r i J k r r dr e
i z z

2 2 2
0 1 12 2 2

1 1 0 1 1 0 1 1 1
0

(1 ) 2 { ( ; )}( ),   where   {}= [ ( ; )] ( )
2

φλ π ω ω
λ π

∞∞ ∞

=−∞ =−∞

∞∞
−

=−∞

= + Φ Φ

∑ ∑ ∫

∑ ∫

m n

k k kikz i r i r i rn inz z z
n n n n n

n

e i e i e e r k e r J k r r dr
i z z

H H

. (22)  

Using the integration relationship of 1 1 ( ; )ωΦ n r  in Eq. (21), Eq. (22) can be expressed in terms of 1Φ :  
2 2

0 1
2

2 2
0 0 1 1 0

0

( , , ; ) (1 ) { ( , ; ) }( )
2

π
φ θλω θ ω θ

λ π

∞
− −

=−∞

Φ = + Φ∑ ∫
k kikz i r i rn in inz z

n
n

e ix y z e i e e r e d k
i z z

H . (23)  

E. SPECIAL CASES FOR CIRCULAR UNFOCUSED WAVE SOURCES UNDER FRESEL
APPROXIMATION

I. SEPARABLE-VARIABLE WAVE SOURCES

If the variables of the wave source functions are separable between 1r  and θ , i.e., 

11 1 1 1 1( , ; ) ( ; ) ( ; )θθ ω ω θ ωΦ = Φ Φrr r , Eq. (23) can be simplified to (Goodman, Eq. 2-22)18:  
2 2

0 1

1

2
2 2

0 0 1 1 1 0
0

( , , ; ) (1 ) ( ; ) { ( ; )}( )
2

π
φ θ

θ
λω θ ω θ ω

λ π

∞
− −

=−∞

Φ = + Φ Φ∑ ∫
k kikz i r i rn in inz z

n r
n

e ix y z e i e e d e r k
i z z

]H . (24)  
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II. NTH-ORDER BESSEL BEAMS

If in Eq. (24) the wave source is an n th-order Bessel weighting function 1 1 1( , ; ) ( ) θθ ω αΦ = in
nr J r e , where 

n  is an integer and α  is a scaling factor of the Bessel function, a Bessel beam can be produced1,3:  
2 2

0 1

2 2
0 1

2 2
0 0 1 0

2
( )2 2

1 0
0

2 ,
( , , ; ) (1 ) [ { ( )}( )

0, Otherwise2
2 ,

(1 ) (2 { ( )}( ),     where    
0, Otherw2

φ

π
φ θ

πλω α
λ π

πλ π α θ
λ π

∞
−

=−∞

− −

=⎧
Φ = + ⎨

⎩
=

= + =

∑

∫

n

k kikz i r i rm imz z
B m n

m

k kikz i r i rn in i n mz z
n n

m ne ix y z e i e e J r k
i z z

m ne i e i e e J r k e d
i z z

]H

)H
ise

⎧
⎨
⎩

. (25)  

III. NTH-ORDER X-WAVES

Also from Eq. (24), if the wave source is an n th-order X-wave weighting function
1 1 1( , ; ) ( sin ) θθ ω ςΦ = in

nr J kr e , where n  is an integer and ς  is the Axicon angle23, an X wave can be 
produced4,5:  

2 2
0 1

2 2
0 1

2 2
0 0 1 0

2
( )2 2

1 0
0

2 ,
( , , ; ) (1 ) [ { ( sin )}( )

0, Otherwise2
2 ,

(1 ) (2 { ( sin )}( ),    where   
0, O2

φ

π
φ θ

πλω ς
λ π

πλ π ς θ
λ π

∞
−

=∞

− −

=⎧
Φ = + ⎨

⎩
=

= + =

∑

∫

n

k kikz i r i rm imz z
X m n

m

k kikz i r i rn in i n mz z
n n

m ne ix y z e i e e J kr k
i z z

m ne i e i e e J kr k e d
i z z

]H

)H
therwise

⎧
⎨
⎩

. (26)  

IV. PLANE WAVE

A plane wave can be obtained using Eq. (24) if the wave source function is a constant, say, 1 1( , ; ) 1θ ωΦ =r  (i.e., 
setting 0=n  and 0α =  in Eq. (25) or setting 0ς =  in Eq. (26)) and when the Fresnel approximation holds:  

2 2
0 12 2

0 0 0 0( , , ; ) (1 ) (2 { }( )
2

λω π
λ π

Φ = +
k kikz i r i r
z z

P
e ix y z e e k
i z z

)H . (27)  

F. SPECIAL CASES FOR FOCUSED WAVE SOURCES UNDER FRESNEL APPROXIMATION

I. FOCUSED WAVES IN RECTANGULAR COORDINATES

Under the Fresnel approximation, to focus the waves produced by the wave source 1 1 1( , ; )ωΦ x y  located on 
the 1 1−x y  plane (see Eq. (16)), a thin lens can be attached immediately behind the wave source or an 
electronic focusing can be implemented with an array transducer to introduce spatial phase shifts. With the 
paraxial approximation (i.e., considering the wave field near the axis of the lens), the spherical surface of the 
lens can be approximated with a parabolic phase surface. In this case, the phase shift introduced by the lens is 
given by 2 2 2

1 1 1exp{ [ /(2 )]( )} exp{ [ /(2 )] }− + = −i k F x y i k F r  (Goodman, Eq. 5-10)18, where F  is the focal length of 
the lens or electronic focusing. Expressing the wave source in Eq. (16) to include the phase shifts, i.e., 

2 2
1 1 1 1 1 1 1 1( , ; ) ' ( , ; ) exp{ [ /(2 )]( )}ω ωΦ = Φ − +x y x y i k F x y  at the 1 1−x y  plane, where 1 1 1' ( , ; )ωΦ x y  is a modified 

wave source that does not include the phase shifts, a focused beam at distance =z F  can be produced via a 
direct Fourier transform 

1 1, {}x yF  of the modified wave sources 1 1 1' ( , ; )ωΦ x y  (Goodman, Eq. 5-14)18:  
2 2
0 0

1 1 0 0

( )
2

0 0 , 1 1 1( , , ; ) (1 ) { ' ( , ; )}( , )
2

λω ω
λ π

+
Φ = = + Φ

kikF i x y
F

x y x y
e ix y z F e x y k k
i F F

F , (28)  
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where 
0 0 /=xk kx F  and 

0 0 /=yk ky F  are given by Eq. (17). If the wave source has a dimension ×D D , the 
integration limits in the Fourier transform will be from −a  to a , where 2=D a .  

II. FOCUSED WAVE IN POLAR COORDINATES

a. An Arbitrary Focused Waves:

Also under the Fresnel approximation, in polar coordinates, after including the focusing phase shits (either
by a lens or electronic focusing) to the wave source, the wave source in Eq. (23) at the 1 1−x y  plane can be 
expressed as 2

1 1 1 1 1( , ; ) ' ( , ; ) exp{ [ /(2 )] }θ ω θ ωΦ = Φ −r r i k F r , where 1 1' ( , ; )θ ωΦ r  is a modified wave source that 
does not include the phase shifts. At the axial distance =z F  (focal distance), Eq. (23) can be simplified since 
the phase term ( 2

1exp{ [ /(2 )] }i k F r ) in the Hankel transform is removed (Goodman, Eq. 5-14)18:  
2

0
2

2
0 0 1 1 0

0

( , , ; ) (1 ) { ' ( , ; ) }( )
2

π
φ θλω θ ω θ

λ π

∞
− −

=−∞

Φ = = + Φ∑ ∫
kikF i r n in inF

n
n

e ix y z F e i e r e d k
i F F

H . (29)  

If the variables of the wave source function are separable, i.e., 
11 1 1 1 1' ( , ; ) ' ( ; ) ' ( ; )θθ ω ω θ ωΦ = Φ Φrr r , Eq. (29) 

becomes (if the wave source has a diameter of 2=D a , where a  is the radius, the integration limits in the 
Hankel transform will be from 0 to a ):  

2
0

1

2
2

0 0 1 1 1 0
0

( , , ; ) (1 ) ' ( ; ) { ' ( ; )}( )
2

π
φ θ

θ
λω θ ω θ ω

λ π

∞
− −

=−∞

Φ = = + Φ Φ∑ ∫
kikF i r n in inF

n r
n

e ix y z F e i e e d r k
i F F

]H . (30)  

b. Focused nth-order Bessel beams:

If the n th-order Bessel beam in Eq. (25) is focused, as shown in Eqs. (29) and (30), the phase term in the
Hankel transform can be removed. Thus, at the focal distance =z F , a closed form of Eq. (25) can be obtained 
(Morse & Feshbach, P.943; Gradshteyn & Ryzhik, P. 661)20,24:  

2
02

0 0 1 0

0
1 0 1 1 1

0 0

( , , ; ) (1 ) (2 { ( )}( ),
2

( )where   {} ( ) ( )

φλω π α
λ π

δ αα

−

∞

Φ = = +

−
= =∫

n

kikF i r n inF
B n n

n n n

e ix y z F e i e J r k
i F F

k
J r J k r r dr

ak

)H

H
, (31)  

where 0( )δ −a k  a shifted Dirac-Delta function and the shift amount is given by 0 0( / ) α= =k k r F  or by the 
radial distance 0 ( / )α=r F k . If the diameter of the wave source is 2=D a , the Hankel transform in Eq. (31) is 
given by another closed form (Morse & Feshbach, P.619; Gradshteyn & Ryzhik, P.664)20,24:  

0 0 0
1 0 1 1 1 2 2

00

0 1 0 1 0
12 2

0

[ ( ) ' ( ) ( ) ' ( )]{} ( ) ( )

[ ( ) ( ) ( ) ( )] ,    where ' ( ) ( ) ( )

α α αα
α

α α α
α

+ +
+

−
= =

−
−

= = −
−

∫
a

n n n n
n n n

n n n n
n n n

a k J a J k a J k a J a
J r J k r r dr

k
a J k a J a k J a J k a nJ x J x J x

xk

H

. (32)  

This shows that the field at the focus of a Bessel beam is a width modulated ring. The width of the ring will 
decrease to 0 as the radius becomes infinity. Thus, the truncation of the transducer aperture to D  leads to a 
sharp peak at the center of the ring, which is used for high resolution imaging in this study. Notice that the 
closed-form solutions in Eqs. (31) and (32) are valid only when 0r a  and thus their predictions of the 
positions of the rings are only an approximation.  
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c. Focused nth-order X waves:

For an n th-order X wave focused at distance F , the wave field at =z F  is the same as that given in Eq.
(31) except that α  is replaced with sinςk :

2
02

0 0 1 0( , , ; ) (1 ) (2 { ( sin )}( )
2

φλω π ς
λ π

−Φ = = +
n

kikF i r n inF
X n n

e ix y z F e i e J kr k
i F F

)H . (33)  

If the wave source is of diameter 2=D a , the X wave at the focus is given by Eqs. (32) and (33) with 
sinα ς= k . From Eqs. (31) and (33), it is clear that unlike focused Bessel beams, the ring position of X wave

is independent of k  and is determined only by F  and ς .

d. Focused plane wave and lateral image resolution:

The focused plane wave produced by a wave source of diameter D  and focal length F  is a special case of
the Bessel beams or X waves when either 0α =  or 0ς =  in Eq. (31) or (33) (Goodman, Eq. 4-30)18:  

2
0

1
1 12

0 0 0 0 1

1,
( , , ; ) (1 ) (2 {circ( )}( ),   where   circ( ) 1/ 2,

2
0, Otherwise

λω π
λ π

<⎧
⎪Φ = = + = =⎨
⎪
⎩

kikF i r
F

P

r a
r re ix y z F e k r a

i F F a a
)H . (34)  

Setting 0α =  and 0=n  in Eq. (32) and using Eq. (31), a closed form solution of Eq. (34) can be obtained 
(Goodman, Eqs. 2-35 and 4-31)18:  

2 2
0 0 20 1 02 2

0 0 02
0

[ ( )]( , , ; ) (1 ) (2 (1 ) [ Jinc( )]
2 2

λ λω π π
λ π λ π

−
Φ = = + = +

−

k kikF ikFi r i r
F F

P
a k J k ae i e ix y z F e e a k a

i F F i F Fk
) , (35)  

where  
1 0 1 0 1 0

0
0 0 0

2 ( ) 2 [( / ) ] 2 [( / ) ]Jinc( )
( / ) ( / )

= = =
J k a J kr F a J ka F r

k a
k a kr F a ka F r

, (36)  

is the Jinc  function that produces the Airy pattern (Goodman, Eq. 2-35)18. Because Jinc(3.8317) 0= , 
according to the Rayleigh criterion we obtain the lateral resolution AiryPR  of the focused plane wave:  

0 3.8317 [2 3.8317 /(2 )] 1.22 /π λ λ= = = × × ≈Airy
F FPR r F D
ka D

. (37)  

The lateral resolution of an imaging system can also be measured with the full width at half maximum 
(FWHM) of the Jinc  function in Eq. (36), which gives 02 1.41 /λ= ≈FWHMPR r F D  since Jinc(2.2151) 0.5= . If 
F  = 50 mm, D  = 50 mm, f  = 2.5 MHz, and c  = 1500 m/s, then AiryPR  = 0.732 mm and FWHMPR  = 0.846 
mm, where /λ = c f  = 0.6 mm. For the square of the Jinc  function (i.e., intensity of the wave field or the two-
way, i.e., transmit/receive response of an imaging system), the FWHM resolution (diffraction limit) is given by 

2
02 1.029 /λ= ≈FWHMPR r F D  = 0.6174 mm since 2Jinc (1.61633) 0.5=  and thus 0 1.61633 /( )=r F ka .  

III. ULTRASOUND IMAGES FOR VISUAL (RETINA) STIMULATION OF THE BRAIN

Recently, it was found experimentally that when the retina of the eye is stimulated by ultrasound,
corresponding neurons in particular positions of the brain produce electrical signals17. Thus, it is important to 
produce ultrasound images (beam patterns) from optical images captured by a digital camera in real time to 
assist blind people to “see” the surrounding objects. From Eq. (28), assuming that we would like a blind person 
to see an image (ultrasound beam pattern 0 0( , , ; )ωΦ =x y z F ) on the focal plane, an inverse Fourier transform 
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0 0

1
,

−
x yk kF  of the beam pattern with respect to 

0xk  and 
0yk  can be taken to find the modified driving function, 

1 1 1' ( , ; )ωΦ x y  (this does not include the focusing phase shifts ), on the surface of the transducer as follows:  
2 2
0 0 1 10 0

0 0

( ) ( )1 2
1 1 1 0 0' ( , ; ) [ (1 ) [ ( , , ; ) ]

2
λω λ ω

π

∞ ∞
− + +− −

−∞ −∞

Φ = + Φ =∫ ∫ x y

ki x y i k x k yikF F
x y

ix y i Fe x y z F e e dk dk
F

] . (38)  

If the images are not formed on the 0 0−x y  plane but on the spherical surface such as the retina, the phase term 
2 2 2
0 0 0exp[ ( )] exp( )

2 2
− + = −k ki x y i r

F F
 in Eq. (38) should be removed when doing the inverse Fourier transform. 

It is noticed that using the Bessel beams and X waves given in Eqs. (25) and (26), one also could design 
some ultrasound beam patterns that will stay in focus within their large depth of field25. Or, using the zeroth-
order Bessel beam ( 0=n  in Eq. (25)), one could form ultrasound beam patterns by directly adding a shifted 
version of the beam. However, due to the high sidelobes of limited-diffraction beams, the image quality may 
be poor.  

3. METHOD
A. HIGH-RESOLUTION IMAGING WITH FOCUSED J0 BESSEL BEAM

In this study, an f  = 2.5-MHz frequency and D  = 50-mm diameter transducer was used. The transducer
was electronically focused at F  = 50 mm to produce a focused plane wave in transmit (see Eqs. (35) and (36)) 
and a focused zeroth-order Bessel beam 0 1( )αJ r  (see Eqs. (31) and (32)) in receive, where 11202.45 mα −= . 
As a comparison, the focused plane wave was used in both transmit and receive. C-mode images (image plane 
is perpendicular to the beam axis) of an object located at the focal plane of the beams were produced using 
these two different two-way (pulse-echo) imaging schemes26.  

B. ULTRASOUND IMAGES FOR VISUAL (RETINA) STIMULATION OF THE BRAIN

To produce an ultrasound image on the focal plane to perform visual (retina) stimulation of the brain17 to
help certain blind people to “see” objects, the Verasonics 2D Matrix array transducer (7.5 MHz, 32x32 
elements, 9.6 mm on each side, and a pitch of 0.3 mm or 1.5 λ ) and Eq. (38) was used.  

4. RESULTS

The two-way (pulse-echo) beam profiles produced by a focused plane wave in transmit and a focused
zeroth-order Bessel beam in receive, and by the focused plane wave in both transmit and receive are shown in 
Figs. 1(a) and 1(b), respectively. Figs. 2 and 3 are the two-way (pulse-echo) transverse beam profiles 
corresponding to Figs. 1(a) and 1(b) respectively at 9 different axial distances. Plots of transverse beam 
profiles through the beam center corresponding to those in Figs. 2 and 3 are given in Fig. 4. From these 
figures, it is clear that even though the Bessel beam is focused, it still has a larger depth of field and its 
sidelobes are suppressed by the focused plane wave. Fig. 5 shows an object consisting of 30 point scatterers 
used to get C-mode images (imaging plane is perpendicular to the beam axis). The C-mode image obtained by 
transverse scanning of the focused plane wave in transmit and the focused zeroth-order Bessel beam in receive 
is shown in Fig. 6(a). As a comparison, the image obtained with the focused plane wave in both transmit and 
receive is shown in Fig. 6(b). The parameters used to get Figs. 1-6 are in the legends of the corresponding 
figures or in the figures themselves. The image obtained with the focused Bessel beam in receive (Fig. 6(a)) 
has a higher two-way lateral resolution (0.56-mm FWHM) than that (0.66-mm FWHM) of image obtained 
using the focused plane wave in receive (Fig. 6(b)). The diffraction limit of the two-way lateral resolution of 
the focused plane wave in both transmit and receive calculated with the square of the Jinc  function in Eq. (36) 
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is given by 2 1.029 /λ≈FWHMPR F D  = 0.62 mm. Thus, using focused Bessel beam in receive, the lateral 
resolution exceeds the diffraction limit.  

Figure 7 shows the results of ultrasound image (beam pattern) for visual (retina) stimulation of the brain 
according to Eq. (38). It is clear that such images can be produced with a commercial 2D array transducer with 
a relatively small number of elements (32x32 elements) and relatively large pitch (1.5 λ ). All the results in this 
paper were obtained using the method described in the 2005 paper10.  

Figure 1. Axial two-way (pulse-echo) beam profile (normalized magnitude, see the grayscale bar) through the 
axis of the beam. A 2.5-MHz frequency and 50-mm diameter wave source was at the left edge of each image. The 
wavelength was 0.6 mm. (a) A focused plane wave was used in transmit and a focused 0 1( )αJ r  Bessel beam was 

used in receive ( 11202.45 mα −= ). (b) The focused plane wave was used in both transmit and receive.  

Figure 2. Transverse (perpendicular to the beam 
axis) two-way (pulse-echo) beam profiles 

(normalized magnitude) at axial distance of (a) 10, 
(b) 20, (c) 30, (d) 40, (e) 50 (focal distance), (f) 60,
(g) 70, (h) 80, and (i) 90 mm, respectively. Focused

plane wave was used in transmit and focused
0 1( )αJ r  Bessel beam was used in receive.  

Figure 3. This figure is the same as Fig.2 except 
that the images were produced by using the focused 

plane wave in both transmit and receive.  
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Figure 4. Transverse two-way (pulse-echo) beam plots across the center of the beam corresponding to images in 
Fig. 2 (blue dashed line) and Fig. 3 (black solid lines) respectively at 9 axial distances.  

Figure 5. Object consisting of 30 point scatterers 
placed at the 50-mm focal plane of the transducer. 

Figure 6. C-mode images produced by the two-way 
(pulse-echo) ultrasound beams in Figs. 1-4 and the 

point scatterers in Fig. 5. (a) Image produced by 
focused plane wave in transmit and focused 0 1( )αJ r  
Bessel beam in receive. (b) Image produced by the 
focused plane wave in both transmit and receive.  

Jian-yu Lu Focused beams for high-resolution imaging and other applications

Proceedings of Meetings on Acoustics, Vol. 45, 020001 (2022) Page 11

 03 July 2025 01:01:34



Figure 7. Ultrasound image (beam pattern) produced for visual (retina) stimulation of the brain. The parameters 
of the transducer and the object are shown in the figure. (a) Object consisting of 30 small points that a blind 

person wishes to see. (b) Ultrasound image produced at the retina to stimulate the brain of the blind person. (c) 
The normalized magnitude of the electrical signals to drive the elements of the ultrasound transducer to produce 
the image in (b). (d) The phases of the electrical signals to drive the transducer elements. The parameters of the 

transducer are the same as those of the Verasonics 2D Matrix array (https://verasonics.com/matrix-array/).  

5. DISCUSSION AND CONCLUSION

In this paper, analytical solutions were obtained for various beams such as Bessel beams, X waves, and
plane waves with and without focus in both rectangular and polar coordinates. Using a focused plane wave in 
transmit and a zeroth-order Bessel beam in receive, a C-mode image (imaging plane is perpendicular to the 
beam axis) at the focal distance was obtained. The lateral resolution of the image obtained was higher than the 
diffraction limit of the image obtained with the focused plane wave used in both transmit and receive. 
Although the Bessel beam was focused, it still has a larger depth of field than the conventional focused plane 
wave. The sidelobes of the Bessel beam were suppressed by the focused plane wave in transmit.  

In addition, using the analytical solutions, an ultrasound image (beam pattern) that can be used for visual 
(retina) stimulation of the brain to help certain blind people to see objects was obtained.  
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