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Multi-Channel Data Transmission with X Wave 
and Bessel Pulses  
 

Jian-yu Lu, Fellow, IEEE  

 
Abstract— X wave and Bessel pulses are waves that do 

not spread transversely as they propagate. When they are 
realized in practice with a wave radiator (such as 
transducer) of a finite aperture, they have a very large depth 
of field. Because of this property, they have various 
applications such as medical imaging.  

In this paper, X wave and Bessel pulses were studied for 
ultrasound data transmission. Theory, computer simulation, 
and experiment were conducted. Both single-channel and 
multiple-channel data transmissions were investigated. 
Results show that it is feasible to use X wave and Bessel 
pulses to transmit information for data communication and 
the data transmission rate can be significantly increased 
over a large depth of field when multiple communication 
channels are used. This is important for applications such 
as video data transmission where a high data transmission 
rate is desirable.  

In addition, applications of Bessel pulses as ultrasound 
or optical delay lines are discussed and the extension of 
applications of X wave to other waves such as optical, 
electromagnetic, and deBroglie waves are also discussed.  

 
Index Terms— X wave, Bessel pulses, ultrasound data 

communication, optical and electromagnetic 
communications, quantum mechanics, deBroglie waves, 
Klein-Gordon, Dirac, and Weyl equations  
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I. INTRODUCTION  
Waves that do not spread transversely (in the direction that 

is perpendicular to the propagation direction) as they propagate 
have been studied by various researchers in different areas of 
science and engineering [1-17]. X wave (it is so called because 
its shape resembles the letter “X” along its axial cross section) 
[6-7] and Bessel pulses [14-16] are two examples of such 
waves that are highly localized as they propagate to infinite 
distance. In practice, when these waves are realized with a 
transmitter (such as an ultrasound transducer) of a finite 
aperture, they have a very large depth of field (DOF) (the 
distance at which the peak amplitude of the wave is reduced to 
one half of that at the surface of the wave source). Because of 
the nonspreading and localization property, both X wave and 
Bessel pulses have been used in various applications such as 
medical imaging [16, 18-19].  

In this paper, X wave and Bessel pulses are studied for 
ultrasound data transmissions that have various applications. In 
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underwater acoustics, ultrasound is used to communicate 
between submerged objects [20-21]. In industry, ultrasound is 
used to penetrate metal walls of containers for communications 
[22-23] where electromagnetic waves have difficulty to 
penetrate. In biomedical applications, ultrasound is used to 
communicate with implant or diagnostic devices [24-25]. In 
many of these applications, a high data transmission rate is 
desirable, especially, in applications where transmission of 
video signals is required.  

In ultrasound communications, the data transmission rate is 
limited by many factors such as frequency, bandwidth, 
dispersion (wave speed changes with temporal frequency), 
diffraction, phase aberration, scattering, attenuation, multiple 
reflections, multiple paths, and noise, etc. Even under ideal 
conditions where the media is isotropic and homogeneous, the 
frequency, bandwidth, dispersion, and diffraction of ultrasound 
will ultimately limit the data transmission rate. Currently, 
conventional focused or unfocused ultrasound beams are used 
for data transmissions [20-25]. For unfocused beams such as 
spherical waves, ultrasound signal is spread in a wide space 
and thus its intensity drops quickly with distance due to 
diffraction. Also, the signals are easier to be intercepted and 
thus the communications are less secure. With focused beams, 
their DOF is short. I.e., the receiver needs to be placed near the 
focus of the beams to get the strongest signals. Away from the 
focus, the waves undergo diffraction spread and thus the wave 
intensity diminishes quickly.  

Unlike focused beams, X wave and Bessel pulses have a 
very large DOF and are highly localized around the wave 
propagation axis. As the size of aperture of the transducer is 
increased, the DOF will increase proportionally. Because these 
beams can maintain a very small beam width throughout the 
DOF, they are also called pencil beams. Thus, when these 
beams are used for data transmission, the receiver can be 
placed at any distance within the DOF along the beam axis 
without degradation of received signals. Also, the signals are 
more difficult to be intercepted due to the narrow beam width, 
increasing the communication security. In addition, because 
these beams are pencil like, they can be stacked side by side in 
a two-dimensional (2D) grid to form multiple communication 
channels in a plane that is perpendicular to the wave 
propagation axis to greatly increase the data transmission rate. 
When a piece of information is broken up into segments, 
scrambled, and then transmitted over multiple channels, 
security is further enhanced.  

This paper is organized as follows. A brief theory of the X 
wave and Bessel pulses will be presented, followed by both 
computer simulations and experiments to show the feasibility 
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of data transmission using single and multiple communication 
channels. Finally, a discussion and conclusion will be given.  

II. THEORETICAL PRELIMIARIES  
The scalar wave equation in free space for light and in 

isotropic/homogeneous media for sound in cylindrical 
coordinates is given by [26]:  

 
2 2 2

2 2 2 2 2

1 1 1 ( , , ; ) 0φ
φ

 ∂ ∂ ∂ ∂ ∂  + + − Φ =  ∂ ∂ ∂ ∂ ∂  
r r z t

r r r r z c t
, (1) 

where 2 2= +r x y  is radial distance, φ  is azimuthal angle, 
z  is the axial axis along which wave propagates, t  is time, c  
is the speed of light in vacuum or speed of sound in 
isotropic/homogeneous media, and ( , , ; )φΦ r z t  is the Hertz 
potential or acoustic pressure. To get a wave that do not change 
its shape as it propagates to infinite distance, it is to find a 
solution ( , , ; )φΦ r z t  = 1( , , )φΦ −r z c t , where 1c  is a constant 
velocity of the wave that propagates in the z  direction. It is 
easy to prove that the following function is a solution to Eq. (1) 
[6]:  

 0 1( )

0

( , , ; ) ( ) ( )φφ
∞

− + −Φ =  zka ik z c tin
nr z t e B k J qr e dk , (2) 

where 1= −i , 0,1,2,= Ln  is an integer, /ω=k c  is the 
wave number, 2ω π= f  is the angular frequency, f  is the 
frequency, ( )B k  is an arbitrary function (well behaved) of k  
and can represent the transfer function of a practical transmitter 
system, ( )⋅nJ  is the n th-order Bessel function of the first kind, 

0 0>a  is a real constant, 2 2= −zk k q  is the z  component 
of the wave number, and 1 /ω= zc k . If sinζ=q k , then 

2 2( sin ) cosζ ζ= − =zk k k k  and 1 / cosζ=c c , where 
0 / 2ζ π≤ <  is an Axicon angle [17], we obtain an axially 
symmetric three-dimensional (3D) X wave [6]:  
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where the subscript “ nX ” denotes an nth-order X wave. If 
α=q , where 0 α≤ < k  is a real constant for a propagating 

wave, and 2 2α= −zk k , we obtain an axially symmetric 3D 
Bessel pulse [14-16]:  
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where the subscript “ nB ” denotes an nth-order Bessel pulse. 
When 0=n , both X wave and Bessel pulse are axially 
symmetric and have a peak at 0=r .  

Using a 2D form of Eq. (1) in rectangular coordinates 
(assuming the wave does not change in y  direction) [27]:  

 
2
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where 2 2 2 2 2( / / )∇ = ∂ ∂ + ∂ ∂x z  is the Laplacian [27], 
( , )=rr x z  is a vector in the rectangular coordinates, one 

obtains a 2D X wave and Bessel pulse (also called array beams 
[28-29]) that can be produced by a one-dimensional (1D) linear 
array transducer, respectively:  

 2
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where the superscript in 2X  and 2B  represents 2D. Notice that 
unlike 3D beams, the 2D beams are not localized around the 
wave propagation axis unless an aperture apodization in the x  
axis is applied, which will cause wave diffraction.  

From Eq. (3) or (6), one obtains the phase pXv  and group 

gXv  velocities of the X wave:  

  and 
cos cos

ω ω
ζ ζ

∂= = ≥ = = ≥
∂pX gX

z z

c cv c v c
k k

. (8) 

From Eqs. (4) or (7), the phase pBv  and group gBv  velocities of 
the Bessel pulse can be obtained:  

 
2 2

ω ω
α

= = ≥
−

pB
z

v c
k k

 (9) 

and  

 21 ( )ω α∂= = − ≤
∂gB

z

v c c
k k

. (10) 

To produce the theoretical X waves (Eqs. (3) and (6)) and 
Bessel pulses (Eqs. (4) and (7)), a transmitter (wave source) 
with an infinite aperture is required. In practice, when the 
aperture of the wave source is finite of a radius a , the depth of 
field of the X waves and Bessel pulses respectively will be 
finite as follows [6]:  

 cotζ=XDOF a  (11) 

and [16]  

 20( ) 1
α

= −B
kDOF a , (12) 

where 0 02 /π=k f c  and 0f  is the center frequency of the 
pulses. As → ∞a , DOF becomes infinity and both the 
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approximate X wave and Bessel pulse approach their 
theoretical limits given in Eqs. (3) and (4) respectively.  

To produce a binary code such as “1011” with X wave and 
Bessel pulse respectively for data communications, four time-
shifted versions of Eqs. (3) and (4) are superposed coherently 
with a fixed time interval Δt  between the digits and the 
amplitude of each shifted wave is multiplied by the digit (when 
a digit is “0”, the corresponding amplitude will be 0).  

III. COMPUTER SIMULATION  
To show how X waves and Bessel pulses can be used to 

transmit binary codes such as “1011”, a computer simulation 
was conducted. In the simulation, the speed of wave was 
assumed to be c  = 1500 m/s for ultrasound in water at the 
room temperature. A flat transducer with a center frequency of 
2.5 MHz and a diameter of 50 mm was used. The system 
transfer function ( )B k  of the transducer was assumed to be 
approximated with a Blackman window function [30] that has a 
FWHM (full-width-at-half-maximum) bandwidth of about 81% 
of the center frequency. The drive signal for the transducer was 
produced with Eq. (3) for X wave [7] and Eq. (4) for Bessel 
pulse [16] by setting 0=z  (at the transducer surface) and 

0=n  (axially symmetric pulse) after excluding ( )B k , and the 
waves were obtained at one temporal frequency a time using 
the method published previously [31]. For X wave, 0a  = 0.05 
mm and 4ζ = ° , which give a DOF of about 357.52 mm. For 
Bessel pulse, 0a  = 0 and -11202.45 mα = , which give a DOF 
of about 216.28 mm at the center frequency. For a better 
transfer of electrical power to the transducer, a one-and-a-half-
cycle 2.5-MHz sine signal was used to convolve with the drive 
signal [16]. The binary code was then obtained by coherently 
superposing the shifted versions of the X wave and Bessel 
pulse respectively by 1.2 sμΔ =t . For comparison, both 
spherical wave pulses (approximately produced with a small 
disc transducer of about 2-mm radius) and Gaussian (25-mm 
FWHM Gaussian aperture weighting) pulses focused at F  = 
170 mm and 100 mm respectively were simulated in Figs. 1 
and 2. The speed of both the spherical wave pulses and the 
focused Gaussian pulses equals to c .  

To increase the transmission data rate over a large depth of 
field for X wave and Bessel pulses, the single-channel binary 
code (see Figs. 1 and 2 respectively) was shifted transversely 
(perpendicular to the wave propagation direction) and then 
coherently combined with other binary codes such as “1001” 
and “1111” (see Figs. 3 and 4 respectively). The binary codes 
from multiple channels can be received by an array of receivers 
anywhere along the path of the beams within the large DOF 
with a proper setting of detection threshold. The separation 
between different channels that transmit binary codes was 
about 8.75 mm.  

 

 

Fig. 1.  Computer simulation of a binary code “1011” (digital 
information, the code is read from right to left) received at an axial 
distance z  = 170 mm away from the surface of the transducer (wave 
transmitter) on the left. The binary code was produced by (a) spherical 
wave pulses generated approximately by a small disc transmitter of 
about 2-mm radius, (b) Gaussian pulses with 25-mm full-width-at-half-
maximum aperture apodization and focused at F  = 170 mm, and (c) 
X wave with an Axicon angle 4ζ = °  and depth of field of 357.52 mm. 
The transducer diameter was 50 mm for both focused Gaussion pulses 
and X wave, and the center frequency was 2.5 MHz with a wavelength 
of 0.6 mm in water. The transducer was driven by a 1.5-cycle sine-
wave pulse and the fractional bandwidth of the transducer was about 
81% of the center frequency. The envelope of the radio-frequency 
pulses was used to represent the binary code and the gray-scale bar 
represents the normalized ultrasound pressure. In addition, the velocity 
of X wave is about 0.275 μs  (or 0.243%) faster (see the vertical lines) 
than the spherical wave and the focused Gaussian pulses that travel at 
the speed of sound c , which is very close to the theoretical value 
(0.244%) calculated by the group velocity formula in Eq. (8). Other 
parameters used in the simulation are given in the figure.  

 

 

Fig. 2.  This figure is the same as Fig. 1 except that the the binary 
code was received at z  = 100 mm, the focal lengh F  of the Gaussian 
pulses was 100 mm, and the Bessel pulses instead of X wave were 
used to produce the binary code. The vertical lines show that Bessel 
pulses with a scaling parameter -11202.45 mα =  and depth of field 
of 216.28 mm travel about 0.45 us (or 0.675%) slower than the 
spherical wave and focused Gaussian pulses that travel at the speed 
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of sound c , which is very close to the theoretical value (0.662%) 
calculated by Eq. (10).  

 

 

Fig. 3.  This figure is the same as Fig. 1 except that three binary 
codes (“1001”, “1011”, and “1111”) were transmitted simultaneously via 
three channels with a transducer of 67.5 mm x 50 mm aperture. The 
focused Gaussian pulses were not included since they have the same 
traveling velocity as the spherical wave pulses.  

 

 

Fig. 4.  This figure is the same as Fig. 2 except that three binary 
codes (“1001”, “1011”, and “1111”) were transmitted simultaneously via 
three channels with a transducer of 67.5 mm x 50 mm aperture. The 
focused Gaussian pulses were not included since they have the same 
traveling velocity as the spherical wave pulses.  

 

 

Fig. 5.  A block diagram of experiment for measuring the binary 
codes (binary information) at two axial distances z  = 170 mm and 100 
mm for X wave and Bessel pulses respectively. A flat, 2.5-MHz, about 
81% fractional bandwidth, 50-mm diameter, and 10-ring annular array 
transducer with customized ring widths [16] was mounted on the left of 
a water tank. On the right, a 0.5-mm diameter and 1-20 MHz 
hydrophone was used to measure the sound pressure as the 
hydrophone scanned from top to bottom in 200 steps over 50 mm 
distance. In each step, an arbitrary waveform generator sent an 
appropriate signal via a power amplifier to each ring of the transducer, 
and the hydrophone received the signal after a set delay time. A 
digitizer (40 MS/s sampling rate) converted the received signal and 
stored it in a computer. This process was repeated for all 200 steps. 
Then, a different signal was sent to a different ring and the process 
was repeated until the signals from all rings were acquired and 
digitized. The digits of the binary code were formed by coherently 
supoerposing the data acquired from all rings of the transducer.  

IV. EXPERIMENT  
Experiment was conducted to show that it is feasible to 

transmit binary codes with X wave and Bessel pulses. In the 
experiment, a flat, 1-3 polymer/ceramic composite, 50-mm 
diameter, 2.5-MHz center frequency (the bandwidth was close 
to that in the simulation), and 10-ring ultrasound annular array 
transducer was used as a transmitter [16]. The widths of the 
rings of the transducer were the same as those of the lobes of 
the Bessel function with -11202.45 mα =  [16]. Fig. 5 shows a 
system block diagram of the experiment. The transducer was 
placed on the left side of the water tank and a 0.5-mm diameter 
and 1-20 MHz hydrophone (NTR System, Inc.) was on the 
right to scan a 50-mm path vertically across the center of the 
wave to receive signals when each transducer ring was driven 
by an arbitrary waveform generator (Analogic 2045B, 
Analogic, Peabody, MA) and a radio-frequency power 
amplifier (ENI 240L, Rochester, New York). The drive signal 
for each transducer ring was obtained from Eq. (3) with 0=z  
and ( ) 1=B k  for the X wave [7], and obtained using 0 ( )α iJ r  
in Eq. (4) combined with the one-and-a-half-cycle sine-wave 
electrical signal, where ir  was the center radius of each ring 
and 1, 2, ,10= Li  was an index of the rings, for the Bessel 
pulse [16]. The X wave and Bessel pulse were obtained by 
combining the respective signals from all 10 rings of the 
transducer [32]. All other parameters of the X wave and Bessel 
pulse were the same (including the formation of the single and 
multiple communication channels) as those in the simulation 
except that the focused Gaussian pulses were not included 
since their speed was the same as that of the spherical wave 
pulses and the Gaussian pulses have a very small depth of field.  
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Fig. 6.  This figure is the same as Fig. 1 except that the binary code 
was obtained using the experiment system in Fig. 5 and the focused 
Gaussian pulses were not included.  

 

 

Fig. 7.  This figure is the same as Fig. 2 except that the binary code 
was obtained using the experiment system in Fig. 5 and the focused 
Gaussian pulses were not included.  

 

 

Fig. 8.  This figure is the same as Fig. 3 except that the binary codes 
were obtained experimentally using the system in Fig. 5.  

 

 

Fig. 9.  This figure is the same as Fig. 4 except that the binary codes 
were obtained experimentally using the system in Fig. 5.  

 

V. RESULTS  
The results of the simulation of a binary code using a single 

channel are shown in Figs. 1 and 2 for X wave (at axial 
distance z  = 170 mm) and Bessel pulses (at z  = 100 mm) 
respectively. The results for multiple binary codes transmitted 
via multiple channels are given in Figs. 3 and 4 for the X wave 
and Bessel pulses respectively. The increased number of 
channels increases the data transmission rate proportionally 
since data can be transmitted in parallel.  

The experiment results of transmitting binary codes using X 
wave (Figs. 6 and 8) and Bessel pulses (Figs. 7 and 9) match 
with the simulation results well, where each binary code was 
formed by superposing shifted versions of the respective X 
wave and Bessel pulse with 1.2 sμΔ =t . Different binary 
codes are sent via different channels that are separated 8.75 
mm between the channels.  

VI. DISCUSSION  

A. Data Transmission Rate  
From both computer simulation and experiment results, it is 

clear that the total data transmission rate depends on the data 
transmission rate of each channel and the number of channels.  

Data transmission rate of each channel depends on the 
ultrasound pulse length of each binary digit, and the pulse 
length depends on the center frequency and bandwidth of the 
ultrasound. A higher frequency allows a larger bandwidth at a 
given fractional bandwidth (bandwidth divided by the center 
frequency), and a wider bandwidth produces a shorter pulse 
and thus increases the data transmission rate.  

Given a data transmission rate of each channel, the total 
data transmission rate will be proportional to the number of 
channels. The number of channels allowed in a given 
transducer aperture depends on both the center frequency and 
either the Axicon angle ζ  of X wave (see Figs. 3 and 8) or the 
scaling parameter α  of Bessel pulses (see Figs. 4 and 9). As 
ζ  or α  increases, the beam width becomes smaller (more 
localized), allowing to pack more channels into a given 
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transducer aperture and thus increasing the data transmission 
rate. However, as ζ  or α  increases, according to Eqs. (11) 
and (12), the depth of filed will reduce, which reduces the 
communication distance unless the center frequency is 
increased to compensate. In other words, at a given center 
frequency, if the communication distance is reduced, the data 
transmission rate can increase. In this paper, only three 
channels are used as an example. However, more channels can 
be added if the communication distance can be reduced (the 
DOF calculated from Eq. (11) is 357.52 mm for X wave and 
the DOF calculated from Eq. (12) is 216.28 mm for Bessel 
pulses at a center frequency of 2.5 MHz) or the frequency is 
increased.  

The 3D X wave (Eq. (3)) and Bessel pulses (Eq. (4)) are 
axially symmetric when 0=n . Thus, channels also can be 
added in the direction perpendicular to those shown in Fig. 3 
and 8 for X wave and Figs. 4 and 9 for Bessel pulses. If 3 
channels are added in both x  and y  directions, the total 
number of channels will be 9. In general, if the number of 
channel in each direction is N , the total data transmission rate 
will be proportional to 2N , which can be a very big number.  

B. Wave Dispersion  
Another factor that affects the data transmission rate is 

dispersion of the wave. From Eqs (8) to (10), it is clear that 
both the phase and group velocities of the X wave only depend 
on the Axicon angle ζ , i.e., they do not depend on the 
temporal frequency (nondispersive). However, for Bessel 
pulse, both of its phase and group velocities depend not only on 
the scaling parameter α , but also change with the wave 
number k  or the frequency f . This means that X wave pulses 
will not distort in the direction of propagation within their DOF 
while the Bessel pulses will. The dispersion makes the Bessel 
pulses become longer as they propagate and thus will limit the 
data transmission rate. This is evident from Figs. 2, 4, 7, and 9. 
Thus, X wave can have a higher data transmission rate than 
Bessel pulses. However, the electrical drive signals required to 
produce Bessel pulses are less complicated than those to 
produce X wave.  

C. Sidelobes  
It is clear from Figs. 1 to 9 (except Fig. 5), both X wave and 

Bessel pulses have sidelobes. The sidelobes between the 
channels will interfere if the channels are packed too close 
together. Thus the sidelobes will limit the number of channels 
that can be packed within a give size of transducer aperture and 
limit the data transmission rate.  

D. Inhomogeous Media  
Strictly speaking, Eq. (1) and thus its X wave solution in 

Eq. (3) and Bessel pulse solution in Eq. (4) are valid for 
isotropic/homogeneous media. In many applications, the 
medium is inhomogeneous and dispersive, has phase 
aberration, scattering, attenuation, multiple reflections, multiple 
paths, noise, and is even anisotropic. Depending on the severity 
of these distortions, the data transmission rate may be reduced.  

E. Communication Security  
Data transmission with X wave or Bessel pulses allows for 

a more secure communication since the information is 
transmitted along a narrow path between the transmitter and the 
receiver. This makes eavesdropping more difficult since such 
activities are easier to be noticed by the receiver.  

Using multiple channels, the eavesdropping can be even 
harder. This is because each channel can transmit only a part of 
a message, and thus getting the information from one channel 
may not be able to know all the information. To intercept 
signals from all channels, the communication may be 
interrupted. Also, decoding from signals received from 
multiple channels will be difficult without knowing how the 
original signals were broken up and transmitted via different 
channels. Beyond the DOF of X wave or Bessel pulses, 
diffraction makes information from all channels scrambled and 
thus the information may not be very useful. Also, beyond the 
DOF, beam intensity may become too small to be detected due 
to diffraction.  

F. System Complexity  
To produce X wave and Bessel pulse, Eqs. (3) and (4) need 

to be used respectively to drive the transducer, as described in 
the Experiment section above. Digital codes to be transmitted 
can then be used to modulate the drive signals. For 0=n , the 
waves are axially symmetric and thus both the X wave and 
Bessel pulses can be produced with an annular array transducer 
with only a few elements (rings). For the parameters α  and ζ  
chosen in this paper, 10 rings were enough for single-channel 
data transmissions.  

For multiple-channel data transmission, since the X wave 
and Bessel pulses need to be shifted in both x  and y  
directions, the resulting waves may not be axially symmetric. 
In this case, 2D array transducer may be needed. Although the 
number of elements of the 2D array can be optimized for given 
α  and ζ , it can be much larger than that of the annular array. 
Thus, the data transmission rate of multiple channels is 
increased at the expense of the increased system complexity.  

G. Conventional Focused Waves  
Using conventional focused waves such as the focused 

Gaussian pulses in Figs. 1 and 2, single and multiple channel 
communications can be achieved in a way similar to those with 
the X wave and Bessel pulses. However, since the DOF of 
focused waves are short, detectors need to be placed at the 
focal distance to get the signals.  

H. Coded Excitation for Ultrasound Imaging  
Using single or multiple channels, X wave and Bessel 

pulses can be used for pulse-echo imaging over a large DOF 
with coded excitations to increase signal-to-noise ratio [33]. 
Using multiple channels, image frame rate can be increased.  

I. Phase and Group Velocities and Delay Lines  
It is clear from Eq. (8) that both the phase and group 

velocities of X wave are nondispersive (independent of 
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temporal frequency) and are larger than or equal to c , where c  
is given in Eq. (1) and is the propagation speed of the spherical 
wave and the focused Gaussian pulse (see Figs 1, 3, 6, and 8). 
For Bessel pulse, both the phase (Eq. (9)) and group (Eq. (10)) 
velocities are dispersive, and the group velocity is always 
smaller than or equal to c  (see Figs. 2, 4, 7, and 9) and the 
group velocity decreases as α  increases. From Figs. 1, 3, 6, 
and 8, it is seen that the traveling speed of the binary codes is 
about 0.275/113.33 = 0.243% faster than c  for X wave, which 
is very close to the theoretical value (0.244%) of the group 
velocity calculated with Eq. (8). For the Bessel pulses in Figs. 
2, 4, 7, and 9, the velocity is about 0.45/66.67 = 0.675% slower 
than c , which also is very close to the theoretical value 
(0.662%) calculated with the group velocity formula Eq. (10).  

Because the group velocity of Bessel pulses is slower than 
c  and decreases as α  increases, the Bessel pulses can be used 
for delay lines. Currently, acoustic delay lines are made of 
surface acoustic wave (SAW) devices [34-36]. The advantage 
of using Bessel pulses versus SAW is that the delay time can 
be easily changed with α . Also, as shown in Figs. 4 and 9, 
multiple channels can be packed within a given transducer 
aperture to increase the data transmission rate. In addition, 
since the Bessel pulses have a very large DOF, the delay time 
can be changed by simply changing the distance between the 
transmitter and the receiver (this is the case for X wave too). 
However, as mentioned before, the dispersion of Bessel pulses 
will limit the data transmission rate as the propagation distance 
increases. For X wave, there will be no dispersion.  

J. Optical and Electromagetic Waves  
Because the wave equation in Eqs. (1) and (4) are the same 

for both light in vacuum (see X wave produced in optics [1-5], 
where each component of the vector electrical field and 
magnetic field in free space satisfies Eqs. (1) and (4)) and 
sound in isotropic/homogenous media, the results in Figs. 1 to 
9 (except Fig. 5) are the same for light or other electromagnetic 
waves except that the parameters of the waves are different and 
c  is the speed of light in vacuum [11][37-38]. This means that 
the data communication method developed for ultrasound here 
can be extended to optical and other electromagnetic waves.  

Notice that unlike the optical fiber communications [39], X 
wave communications are nondispersive and thus it may allow 
a higher data transmission rate. Also, Bessel pulses can be used 
as optical delay lines [40].  

K. More on the Velocity of the Waves  
From the results in this study, it is evident that the binary 

code information carried by the X wave and Bessel pulses can 
respectively travel at a velocity that is faster or slower than the 
speed, c , of sound in isotropic/homogeneous media or the light 
in vacuum along the wave axis where the waves are highly 
localized (the transverse width of the pulses can be close to the 
diffraction limit of the focused Gaussian pulse at its focus, see 
Figs. 1 and 2), and the information can be detected by setting a 
proper threshold of a detector to exclude sidelobes.  

The reason why X wave in Eq. (3) has a group velocity that 
is larger than c  can be explained as follows. For an arbitrary 

wave ( ; )Φ rr t  that is a solution to a linear wave equation, 
where ( , , )=rr x y z  is a point in space, at a fixed rr  the wave 
can be expanded using the following 1D Fourier transform pair 
(assuming that the transformations exist) [41]:  

 ( ; ) { ( ; )} ( ; ) ωω
∞

−∞

Φ = Φ = Φ
r r r% i t

tr r t r t e dtF , (13) 

and  

 1 1( ; ) { ( ; )} ( ; )
2

ω
ω ω ω ω

π

∞
− −

−∞

Φ = Φ = Φ
r r r% % i tr t r r e dF , (14) 

where ( ; )ωΦ r% r  is the temporal Fourier transform of ( ; )Φ rr t , 
ω  is an angular frequency, and {}⋅tF  and 1{}ω

− ⋅F  denote the 
forward and inverse Fourier transforms respectively. Similarly, 
for each fixed ω , ( ; )ωΦ r% r  satisfies the following 3D spatial 
Fourier transform pair (also assuming that the transformations 
exist) [41]:  

 ( ; ) { ( ; )} ( ; )ω ω ω − ⋅Φ = Φ = Φ
r r

r

r

r r r r% % % ik r
r

r

k r r e drF , (15) 

and  

 1
3

1( ; ) { ( ; )} ( ; )
(2 )

ω ω ω
π

− ⋅Φ = Φ = Φ
r r

r

r

r r rr% % % ik r
k

k

r k k e dkF , (16) 

where ( , , )=
r

x y zk k k k . Inserting Eq. (16) into Eq. (14), we 
have:  

 
3

( )
4

1 1( ; ) ( ; )
2 (2 )

1 ( ; )
(2 )

ω

ω

ω ω
π π

ω ω
π

∞
⋅ −

−∞

∞
⋅ −

−∞

 
Φ = Φ 

  
 

= Φ 
  

 

 

r r

r

r r

r

r rr %

r r
%

ik r i t

k

i k r t

k

r t k e dk e d

k e dk d

. (17) 

Eq. (17) indicates that ( ; )Φ rr t  is a linear superposition of 
the plane wave ( )ω⋅ −

r ri k r te  propagating at the speed /ω k  in the 
direction of the vector wave number 

r
k  with 4(1/(2 ) ) ( ; )π ωΦ

r
% k  

as its complex amplitude calculated with both Eqs. (13) and 
(15), where 2 2 2| |= = + +

r
x y zk k k k k . Inserting the plane wave 

above into the wave equation in Eq. (1), for the plane wave to 
be a solution, we must have /ω =k c , i.e., the plane wave must 
travel at a fixed speed c  in the direction of 

r
k . Since the X 

wave (see Eq. (3)) that travels in the z  direction is also a 
solution to Eq. (1), it can be expressed as a linear superposition 
of the plane waves that travel at speed c  [6]. This shows that it 
is the interference of these plane waves that makes the phase 
and group velocities of the X wave larger than or equal to c .   

L. deBroglie Waves  
In addition to electromagnetic waves, X wave can exist in 

deBroglie waves [8-11,38,42]. The relativistic free-particle 
Klein-Gordon, Dirac, and Weyl equations all have plane wave 
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solutions [42], ( ) /( ; ) ( ) ( ) ⋅ −Φ =
r r

hr r i p r Et
P r t N p u p e , where ( ; )Φ r

P r t  
is the wave function and the subscript “ P ” means plane wave, 

( , , )=rr x y z  is a point in space, t  is the time, ( )N p  is a 
normalization function, ( )ru p  depends on the wave-equations, 

( , , )= =
rr

h x y zp k p p p  is a momentum vector of the particle 

with xp , yp , and zp  as its components, ( , , )=
r

x y zk k k k  is a 
vector wave number with components xk , yk , and zk , 

0| | /γ λ= = = =r
h gp p k m v h  is the deBroglie relation, 

2 2 2| |= = + +
r

x y zk k k k k , 21/ 1 ( / )γ = − gv c , 0m  is the rest 
mass (for some particles such as photon and neutrino, 0 0=m ), 
c  here is the speed of light in vacuum, h  is the Plank’s 
constant, /(2 )π=h h  is the reduced Plank’s constant, 

+= ±E E  (the “+” and “-” signs before +E  are for particles 
and antiparticles respectively) and 

2
0| | γ ω+ = = = = hE E m c hf , (also 2 2 2 2 4

0
+ = +E p c m c ) is the 

total energy of the particle [43], f  is the frequency of the 
wave, 2ω π= f  is the angular frequency, λ  is the wavelength, 

/+= ∂ ∂ ≤gv E p c  is the group velocity of the plane wave or the 
speed of the free particle in the direction of rp , and 

2 2
0 0/ /( ) /γ γ λ+= = = = ≥p g gv E p m c m v f c v c  is the phase 

velocity of the plane wave, which is much larger than c  for a 
small gv  due to a large wavelength λ .  

Let sin cosζ θ=xk k , sin sinζ θ=yk k , cosζ=zk k , 

cosφ=x r , sinφ=y r , where 2 2= +r x y  is the radial 
distance and 0 2φ π≤ <  is the polar angle in the −x y  plane, 
0 2θ π≤ <  is the polar angle in the −x yk k  plane, and 
0 / 2ζ π≤ <  is an Axicon angle [17], superposing the plane 
wave over the free parameters θ  and k , noticing that 

( ) ( )( ) / ( ) ωω + +⋅ − ⋅= =
rr r r mh m x y zi k x k y i k z ti p r Et i k r te e e , and using the 

procedure in Eqs (2), (5), (6), and (12) of [6], one obtains the X 
wave solutions to the free-particle Klein-Gordon, Dirac, and 
Weyl equations:  

 
max

0

min

max

0 1

min

( )

[ cos ( )]( sin ) cos( )

( )( ; ) ( ) ( )
2

( )( ) ( )
2

π
θ ω

π

π
ζθ ζ φ θ

π

θ
π

θ
π

− ⋅

−

− −−

−

 −Φ =  
 

 −=  
 

 

 

r r
m

m

r r

r

n

k n
a k in i k r t

X
k

k n
k a i z c tin i k r

k

ir t B k e e u p e d dk

iB k u p e e d e dk

, (18) 

where 1= −i , 0,1,2,= Ln  is an integer, ( )B k  is an 
arbitrary function (well behaved) of k  (including the 
normalization function ( ) ( )= hN p N k ), 0 0>a  is a real 
constant, 1 / cosζ= pc v  is a real constant velocity of the X 
wave propagating in the z  direction (or 1

1cos ( / )ζ −= pv c  with 
2

1 1/ ( / ) / 1= ≤p gv c c v c  and 
min max

2
1/ = ≤ ≤ ≤g g gc c v v v c ), 

2
min 0 1/( ( / ) 1)= −hk m c c c , and  

max

2
max 0 /( ( / ) 1)= −h gk m c c v  (notice that k  and gv  are 

related by 0/ /γ= =h hgk p m v  or 2
0 /( ( / ) 1)= −h gk m c c v  if 

≠gv c ), where 
min

2
1/=gv c c  and 

maxgv  are real constants. If 

1 → ∞c , then min 0→k , and if 
max

→gv c , we have max → ∞k . 
For massless particles ( 0 0=m , = =p gv v c , and 

ω+ = =hE pc ), we have / ( / ) / /ω ω= = =h h hk p c c  with 

min 0=k  (when 0ω = ) and  max = ∞k  (when ω → ∞ ), which 
is consistent with the X wave in Eq. (3).  

For the free Klein-Gordon equation (massive spin-0 
particles) [42]:  

2 22
2 0

2 2 2

1 ( , ) 0
 ∂∇ − − Φ = ∂ 

r

h

m c
r t

c t
, (19) 

where 2 2 2 2 2 2 2/ / /∇ = ∂ ∂ + ∂ ∂ + ∂ ∂x y z  is the Laplacian, and, 
( ) 1=ru p  in Eq. (18). Using the identity of Bessel function 

[44]:  

sin cos( )( )( sin )
2

π
φ θ ζ φ θ

π

ζ θ
π

−

−

−= 
n

in in ikr
n

iJ kr e e e d , (20) 

where ( )⋅nJ  is the n th-order Bessel function of the first kind, 
we obtain the X wave solution from Eq. (18):  

max

0 1

min

[ cos ( )]( ; ) ( ) ( sin ) ζφ ζ − −Φ =  mr
n

k
k a i z c tin

X n
k

r t e B k J kr e dk , (21) 

which is the same as Eq. (3) of the wave equation in Eq. (1), 
except that ζ  now depends on 2 /=p gv c v  or the momentum 

0γ= = hgp m v k  of the particle and the integration of k  starts 
from mink  to maxk . Notice that for the free Klein-Gordon 
equation, the plane wave can have both positive and negative 
energy ω= ±hE , and the positive and negative E  represent 
particles and antiparticles respectively [42].  

For the free Dirac equation (massive spin-1/2 particles) 
[42]:  

231 4 4
0 1

23 32 4
0 2

23 2 2 1
0 3

24 1 1 2
0 4

( )

( )

( )

( )

∂Φ∂Φ ∂Φ ∂Φ = − + + Φ ∂ ∂ ∂ ∂
 ∂Φ ∂Φ∂Φ ∂Φ

= + − + Φ ∂ ∂ ∂ ∂
 ∂Φ ∂Φ ∂Φ ∂Φ = − + − Φ
 ∂ ∂ ∂ ∂


∂Φ ∂Φ ∂Φ ∂Φ = + − − Φ ∂ ∂ ∂ ∂

h
h

h
h

h
h

h
h

ci i m c
t i x y z

ci i m c
t i x y z

ci i m c
t i x y z

ci i m c
t i x y z

, (22) 

where 1Φ , 2Φ , 3Φ , and 4Φ  are the four components of the 
wave function array 1 2 3 4( , ) [ , , , ]Φ = Φ Φ Φ Φr Tr t , and the 
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superscript “ T ” means transpose, ( )ru p  in the plane wave 
solution to Eq. (22) consists of four independent arrays and 
each array contains four components as follows [42]:  

(1) (2)
2 2

0 0

2 2
0 0

1 0
0 1
cos sin

( ) ,  ( )

sin cos

θ

θ

ζ ζ

ζ ζ

−

   
   
   
   

= =   + +   
   −
   

+ +   

r r i

i

pc pc eu p u p
E m c E m c

pc pce
E m c E m c

 

2 2
0 0

(3) (4)
2 2

0 0

cos sin

sin cos
( ) ,  ( )

1 0
0 1

θ

θ

ζ ζ

ζ ζ

−− −   
   − + − +   
   −

= =   − + − +   
   
   
   

r r

i

i

pc pc e
E m c E m c

pc pceu p u p
E m c E m c

,(23) 

where the arrays (1) ( )ru p  and (2) ( )ru p  correspond to 0>E  
(particles), and the arrays (3) ( )ru p  and (4) ( )ru p  are for 0<E  
(antiparticles) [42]. The X wave array ( ; )Φ r

nX r t  in Eq. (18), 
which is a solution to Eq. (22), also has four components for 
each of ( ) ( )rju p , where 1, 2,3, 4=j , and the four solutions 

( ) ( ; )Φ r
n

j
X r t  that correspond to the four independent arrays 

( ) ( )rju p  in Eq. (23) can be obtained from Eq. (18) and be used 
to construct other X-wave solutions through a linear 
combination. For the components of ( ) ( )rju p  that contain θie  
and θ−ie , the corresponding components of ( ) ( ; )Φ r

n

j
X r t  should 

be divided and multiplied by −i , and have their order n  
increased and decreased by 1, respectively (see Eqs. (18) and 
(20)).  

For the free Weyl equations (massless, i.e., 0 0=m , spin-
1/2 particles) with right- and left-handed screw forms (refer to 
the spin in the direction of momentum rp ) respectively [42]:  

1 2 2 1

2 1 1 2

        Φ Φ −Φ +Φ∂ ∂ ∂ ∂ = + +        ∂ ∂ ∂ ∂Φ Φ +Φ −Φ         

h
h

R R R R

R R R R

ci i
t i x y z

 (24) 

and  

1 2 2 1

2 1 1 2

        Φ Φ −Φ +Φ∂ ∂ ∂ ∂ = − + +        ∂ ∂ ∂ ∂Φ Φ +Φ −Φ         

h
h

L L L L

L L L L

ci i
t i x y z

,

 (25) 

where 1 2( , ) [ , ]Φ = Φ ΦrR R R Tr t  and 1 2( , ) [ , ]Φ = Φ ΦrL L L Tr t  are 
wave function arrays of Eqs (24) and (25) respectively, the 
superscripts R  and L  represent “right handed” and “left 
handed” respectively, ( )ru p  is given by: [42]:  

cos( / 2)
( )

sin( / 2) θ

ζ
ζ

 
=  
 

rR
iu p

e
 and 

sin( / 2)
( )

cos( / 2) θ

ζ
ζ

 
=  − 

rL
iu p

e
, (26) 

where ( )rRu p  and ( )rLu p  are related to the plane-wave 
solutions of Eqs. (24) and (25) respectively [42]. When both 
the free right- and left-handed Weyl equations are used, only 

0>E  needs to be considered since one equation represents 
particles and the other represents antiparticles [42]. In this case, 
the “ m ” in Eq. (18) should take the “ − ” sign only. Also, for 
the ( )ru p  components that contain θie , the corresponding 
components of the X wave solutions ( ; )Φ r

nX r t  (see Eq. (18)) 
to Eqs. (24) and (25) should be divided by −i  and have their 
order n  increased by 1 (see Eqs. (18) and (20)). Because Weyl 
equations describe massless spin-1/2 particles, = =g pv v c  and 

1 / cosζ=c c , their X wave solutions in Eq. (18) have the same 

gv  and 1c  as those of the X wave in Eq. (3).  

From Eq. (18), it is clear that the phase and group velocities 
of the X wave (propagating in the z  direction) are given by 

1 1/ ( ) /+= = =pX z z zv E p p c p c  and 

1 1/ ( ) /+= ∂ ∂ = ∂ ∂ =gX z z zv E p p c p c  respectively, where 1 ≥c c  
is a constant. This means that X wave is nondispersive and can 
propagate rigidly at velocity 1c . For a free particle that travels 
at a fixed speed gv  in the direction of rp , according to the 
uncertainty principle, it can appear in any place in the space rr , 
as is described by its associated plane wave [45]. Also the 
plane wave can have a finite time duration as is seen in this 
study (see Figs 1-9 except 5), this means that the energy 

ω+ = =h h pE kv  of the particles has a spread [45]. When the 
plane waves of these particles are superposed coherently, the 
particles can cluster together near the peak of the X wave (Eq. 
(18)) that moves rigidly at a constant velocity 1 ≥c c  (notice 
that 2| ( ; ) | ( ; ) ( ; )Φ = Φ Φr r r

n n n

H
X X Xr t r t r t , where the superscript 

“ H ” represents the Hermitian conjugate and ( ; )Φ r
nX r t  is an 

array of multiple components, is the probability density of 
finding a particle at position rr  and time t  for the Dirac and 
Weyl equations, and ( ; )Φ r

nX r t  is a scalar that is related to the 
charge density for the Klein-Gordon equation [42]). This is 
consistent with what observed in the quantum entanglement 
experiments in which the quantum mechanics follows the 
superposition and statistical rules governed by the wave 
functions [46-48], instead of following a deterministic rule with 
“hidden variables” [49]. Also, X wave can be used as 
orthogonal bases to construct other waves of linear wave 
equations through an X wave transform [50].  

VII. CONCLUSION  
X wave and Bessel pulses are used to transmit binary data 

information in a highly localized space over a large depth of 
field (DOF) in ultrasound. The large DOF makes it easier for 
detector placement since signals can be received at any 
distance along the beam path within the DOF. Because both X 
wave and Bessel pulses are highly localized around the beam 
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axis, multiple communication channels can be formed to 
transmit signals in parallel to greatly increase the data 
transmission rate and communication security. Also, because 
Bessel pulses have a lower group velocity, they can be used as 
a delay line.  

Since the wave equation in Eq. (1) is the same for both 
sound and light, the study here in ultrasound is also applicable 
to optical and other electromagnetic waves if the relevant 
parameters are changed properly in the respective fields 
[11][37-38]. In addition, because free-particle Klein-Gordon, 
Dirac, and Weyl equations [42] all have X wave solutions, the 
ultrasound X wave studied here is relevant to the deBroglie 
wave in quantum mechanics.  
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